(16)如圖,E、F分別為正方體面ADD1A1、面BCC1B1的中心,則四邊形BFD1E在該正方體的面上的射影可能是                        。

(要求:把可能的圖序號都填上)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、某大學的信息中心A與大學各部門,各院系B、C、D、E、F、G、H、I之間擬建立信息聯(lián)網(wǎng)工程,實際測算的費用如圖所示(單位:萬元),請觀察圖形,可以不建部分網(wǎng)線而使得信息中心與各部門、各院系都能聯(lián)通(直接或中轉(zhuǎn)),則最少的建網(wǎng)費用是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面PAC⊥平面ABC,△ABC是以AC為斜邊的等腰直角三角形,E、F、O分別為PA,PB,AC的中點,AC=16,PA=PC=10.
(I)設G是OC的中點,證明:FG∥平面BOE;
(II)證明:在△ABO內(nèi)存在一點M,使FM⊥平面BOE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廈門模擬)已知函數(shù)f(x)=Asin(2x+θ),其中A≠0,θ∈(0,
π
2
)
,試分別解答下列兩小題.
(I)若函數(shù)f(x)的圖象過點E(-
π
12
,1),F(xiàn)(
π
6
,
3
)
,求函數(shù)y=f(x)的解析式;
(Ⅱ)如圖,點M,N分別是函數(shù)y=f(x)的圖象在y軸兩側(cè)與x軸的兩個相鄰交點,函數(shù)圖象上的一點P(t,
3
π
8
)滿足
PN
MN
=
π
2
 
16
,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大。(結果用反三角函數(shù)值表示)

(3)     設棱臺DEF-ABC的體積為V, 是否存在體積為V且各棱長均相等的直

平行六面體,使得它與棱臺DEF-ABC有相同的棱長和? 若存在,請具體構造

出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案