方程arcsinx=arccosy表示的曲線(xiàn)是.


  1. A.
    一條線(xiàn)段
  2. B.
    一個(gè)圓
  3. C.
    一條拋物線(xiàn)
  4. D.
    一段圓弧
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
(1)函數(shù)f(x)=
1
lgx
在(0,1)∪(1,+∞)上是減函數(shù);
(2)不等式:arcsinx≤arccosx的解集為[
2
2
,1]

(3)已知數(shù)列{an}的前n項(xiàng)和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過(guò)點(diǎn)M(2,4)作拋物線(xiàn)y2=8x的切線(xiàn),則切線(xiàn)方程可以表示為:y=x+2.
則正確命題的序號(hào)為
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列四個(gè)命題:
(1)一定存在直線(xiàn)l使函數(shù)f(x)=lgx+lg
1
2
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線(xiàn)l對(duì)稱(chēng)
(2)不等式:arcsinx≤arccosx的解集為[
2
2
,1]

(3)已知數(shù)列{an}的前n項(xiàng)和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過(guò)拋物線(xiàn)y2=2px(p>0)上的任意一點(diǎn)M(x°,y°)的切線(xiàn)方程一定可以表示為y0y=p(x+x0).
則正確命題的序號(hào)為
(3)(4)
(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

有下列四個(gè)命題:
(1)一定存在直線(xiàn)l使函數(shù)數(shù)學(xué)公式的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線(xiàn)l對(duì)稱(chēng)
(2)不等式:arcsinx≤arccosx的解集為數(shù)學(xué)公式
(3)已知數(shù)列{an}的前n項(xiàng)和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過(guò)拋物線(xiàn)y2=2px(p>0)上的任意一點(diǎn)M(x°,y°)的切線(xiàn)方程一定可以表示為y0y=p(x+x0).
則正確命題的序號(hào)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有下列四個(gè)命題:
(1)一定存在直線(xiàn)l使函數(shù)f(x)=lgx+lg
1
2
的圖象與函數(shù)g(x)=lg(-x)+2的圖象關(guān)于直線(xiàn)l對(duì)稱(chēng)
(2)不等式:arcsinx≤arccosx的解集為[
2
2
,1]
;
(3)已知數(shù)列{an}的前n項(xiàng)和為Sn=1-(-1)n,n∈N*,則數(shù)列{an}一定是等比數(shù)列;
(4)過(guò)拋物線(xiàn)y2=2px(p>0)上的任意一點(diǎn)M(x°,y°)的切線(xiàn)方程一定可以表示為y0y=p(x+x0).
則正確命題的序號(hào)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案