18.在△ABC中,已知a:b:c=3:2:4,那么cosC=( 。
A.$\frac{1}{4}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{4}$

分析 根據(jù)a:b:c=3:2:4,利用余弦定理求出cosC的值.

解答 解:△ABC中,a:b:c=3:2:4,
所以設(shè)a=3k,b=2k,c=4k,且k≠0;
所以cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{9k}^{2}+{4k}^{2}-1{6k}^{2}}{2×3k×2k}$=-$\frac{1}{4}$.
故選:D.

點評 本題考查了余弦定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=|lnx|,a,b是互不相等的兩個實數(shù),f(a)=f(b),則ab=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:
(1)PC∥平面EBD;
(2)BC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n∈R,則“mn<0”是“拋物線mx2+ny=0的焦點在y軸正半軸上”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題中正確的是( 。
A.空間任三點可以確定一個平面
B.垂直于同一條直線的兩條直線必互相平行
C.空間不平行的兩條直線必相交
D.既不相交也不平行的兩條直線是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,已知sinA:sinB:sinC=3:2:4,那么cosC=(  )
A.-$\frac{1}{4}$B.-$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,異面直線A1B與CC1所成角的大小為(  )
A.60°B.30°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.從分別寫有1,2,3,4,5的五張卡片中依次抽取兩張,假設(shè)每張卡片被取到的概率相等,且每張卡片上只有一個數(shù)字,則取到的兩張卡片上的數(shù)字之和為偶數(shù)的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=sinx+\sqrt{3}cosx$,若方程f(x)=m在閉區(qū)間[0,2π]上恰有三個解x1、x2、x3,則f(x1+x2+x3)=( 。
A.1B.-1C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案