(2008•西城區(qū)二模)設(shè)a∈R,函數(shù)f(x)=3x3-4x+a+1.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,求a的最大值.
分析:(I)先求出函數(shù)f(x)的導(dǎo)函數(shù)fˊ(x),然后解不等式fˊ(x)>0和fˊ(x)<0,即可求出函數(shù)f(x)的單調(diào)區(qū)間;
(II)根據(jù)對(duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,將a分離出來(lái),然后研究另一側(cè)函數(shù)的最值即可求出a的最值.
解答:(Ⅰ)解:f(x)的導(dǎo)數(shù)f′(x)=9x2-4.
令f′(x)>0,解得x>
2
3
,或x<-
2
3

令f′(x)<0,解得-
2
3
<x
2
3

從而f(x)的單調(diào)遞增區(qū)間為(-∞,-
2
3
)
,(
2
3
,+∞)

單調(diào)遞減區(qū)間為(-
2
3
,
2
3

(Ⅱ)解:由f(x)≤0,得-a≥3x3-4x+1
由(Ⅰ)得,函數(shù)y=3x3-4x+1在(-2,
2
3
)內(nèi)單調(diào)遞增,
在(-
2
3
,0)內(nèi)單調(diào)遞減,
從而當(dāng)x=-
2
3
時(shí),函數(shù)y=3x3-4x+1取得最大值
25
9

因?yàn)閷?duì)于任意x∈[-2,0],不等式f(x)≤0恒成立,
故-a≥
25
9
,即a≤-
25
9
,
從而a的最大值是-
25
9
點(diǎn)評(píng):本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減,以及函數(shù)恒成立問(wèn)題,同時(shí)考查了轉(zhuǎn)化與劃歸的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•西城區(qū)二模)函數(shù)y=logax,(a>0,且a≠1)的圖象按向量
n
=(-3,1)平移后恰好經(jīng)過(guò)原點(diǎn),則a等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•西城區(qū)二模)已知點(diǎn)P(x,y)的坐標(biāo)滿足條件
x≥0
y≥0
x+y-2≤0
,則2x-y的最大值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•西城區(qū)二模)將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使平面ACD⊥平面ABC,則折起后B,D兩點(diǎn)的距離為
1
1
;直線BD和平面ABC所成角的大小是
45°
45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•西城區(qū)二模)設(shè)甲,乙兩人每次投球命中的概率分別是
1
3
,
1
2
,且兩人各次投球是否命中相互之間沒(méi)有影響.
(Ⅰ)若兩人各投球1次,求兩人均沒(méi)有命中的概率;
(Ⅱ)若兩人各投球2次,求乙恰好比甲多命中1次的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案