科目: 來源:內(nèi)蒙古包頭三十三中2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
已知函數(shù),.
(Ⅰ)設(shè)x=x0函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目: 來源:內(nèi)蒙古包頭三十三中2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=|x-2|-|x-5|
(1)證明:-3≤f(x)≤3
(2)求不等式f(x)≥x2-8x+15的解集.
查看答案和解析>>
科目: 來源:內(nèi)蒙古包頭三十三中2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù))曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù))在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線l:=α與C1,C2各有一個交點.當α=0時,這兩個交點間的距離為2,當α=時,這兩個交點重合.
(Ⅰ)分別說明C1,C2是什么曲線,并求出a與b的值;
(Ⅱ)設(shè)當α=時,l與C1,C2的交點分別為A1,B1,當α=-時,l與C1,
C2的交點為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目: 來源:內(nèi)蒙古包頭三十三中2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
已知曲線C1:(t為參數(shù)),C2:(為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為,Q為C2上的動點,求PQ中點M到直線(t為參數(shù))距離的最小值.
查看答案和解析>>
科目: 來源:浙江省溫州中學(xué)2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,已知,a+b=4.
(1)求的值;
(2)求△ABC的面積S的最大值;
(3)若=2,求||的最小值.
查看答案和解析>>
科目: 來源:浙江省溫州中學(xué)2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
已知數(shù)列{an}滿足
(1)求數(shù)列{an}的通項公式;
(2)若對任意的n∈N*,不等式λan<n+8·(-1)n恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源:浙江省紹興一中2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
已知點列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是線段A1A2的中點,A4是線段A2A3的中點,…An是線段An-2An-1的中點,…,
(1)寫出xn與xn-1、xn-2之間的關(guān)系式(n≥3);
(2)設(shè)an=xn+1-xn,計算a1,a2,a3,由此推測數(shù)列{an}的通項公式,并加以證明.
查看答案和解析>>
科目: 來源:河南省平頂山市2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
在△ABC中,角A,B,C的對邊分別是a,b,c,且tanA+tanB+=tan·tanB,c=,又S△ABC=.
求:(1)角C;
(2)a+b的值.
查看答案和解析>>
科目: 來源:浙江省瑞安中學(xué)2011-2012學(xué)年高一下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
已知向量,設(shè)函數(shù)f(x)=a·b其中x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
(2)將函數(shù)f(x)的圖象的縱坐標保持不變,橫坐標擴大到原來的兩倍,然后再向右平移個單位得到g(x)的圖象,求g(x)的解析式.
查看答案和解析>>
科目: 來源:浙江省瑞安中學(xué)2011-2012學(xué)年高一下學(xué)期期末考試數(shù)學(xué)文科試題 題型:044
(1)解不等式<1;
(2)已知a、b(0,+∞),且a+2b=1,求+的最小值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com