科目: 來(lái)源:專題七 應(yīng)用性問(wèn)題 題型:044
某企業(yè)2003年的純利潤(rùn)為500萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降.若不能進(jìn)行技術(shù)改造,預(yù)測(cè)從今年起每年比上一年純利潤(rùn)減少20萬(wàn)元,今年初該企業(yè)一次性投入資金600萬(wàn)元進(jìn)行技術(shù)改造,預(yù)測(cè)在未扣除技術(shù)改造資金的情況下,第n年(今年為第一年)的利潤(rùn)為500(1+)萬(wàn)元(n為正整數(shù)).
(Ⅰ)設(shè)從今年起的前n年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為An萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為Bn萬(wàn)元(須扣除技術(shù)改造資金),求An,Bn的表達(dá)式;
(Ⅱ)依上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過(guò)多少年,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)?
查看答案和解析>>
科目: 來(lái)源:專題七 應(yīng)用性問(wèn)題 題型:044
已知某海濱浴場(chǎng)的海浪高度y(米)是時(shí)間t(0≤t≤24,單位小時(shí))的函數(shù),記作y=f(t),下表是某日各時(shí)的浪高數(shù)據(jù):
經(jīng)長(zhǎng)期觀測(cè)y=f(t)的曲線可近似地看成函數(shù)y=Acos(ωt)+b.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acos(ωt)+b的最小正周期T,振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8∶00至晚上20∶00之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng).
查看答案和解析>>
科目: 來(lái)源:專題七 應(yīng)用性問(wèn)題 題型:044
某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(Ⅰ)當(dāng)一次訂購(gòu)量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(Ⅱ)設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(Ⅲ)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購(gòu)1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本)
查看答案和解析>>
科目: 來(lái)源:專題一 不等式 題型:044
如圖,在海邊圍造一個(gè)水產(chǎn)養(yǎng)殖場(chǎng)池,該池有由四個(gè)面積為50 m2的同樣大小的矩形相連建成,它的一邊池壁利用海岸線改建,造價(jià)為3千元/米,其余池壁用水泥澆制,造價(jià)為5千元/米,問(wèn)所利用的海岸線長(zhǎng)度為多少米時(shí),使總造價(jià)最。
查看答案和解析>>
科目: 來(lái)源:專題一 不等式 題型:044
已知關(guān)于x的不等式的解集為M.
(Ⅰ)當(dāng)a=4時(shí),求集合M;
(Ⅱ)若3∈M且5M,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來(lái)源:專題一 不等式 題型:044
設(shè)函數(shù)f(x)=;其中a∈R.
(Ⅰ)解不等式f(x)≤1;
(Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).
查看答案和解析>>
科目: 來(lái)源:專題一 不等式 題型:044
已知f(x)是定義在[-1,1]的奇函數(shù),且f(1)=1,若a、b∈[-1,1],ab≠0時(shí),有.
(1)判斷函數(shù)f(x)在[-1,1]上是增函數(shù)還減函數(shù),并證明你的結(jié)論;
(2)解不等式f(x+)<f()
(3)f(x)≤m2-2am+1,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com