相關(guān)習(xí)題
 0  209240  209248  209254  209258  209264  209266  209270  209276  209278  209284  209290  209294  209296  209300  209306  209308  209314  209318  209320  209324  209326  209330  209332  209334  209335  209336  209338  209339  209340  209342  209344  209348  209350  209354  209356  209360  209366  209368  209374  209378  209380  209384  209390  209396  209398  209404  209408  209410  209416  209420  209426  209434  266669 

科目: 來源: 題型:

已知點(diǎn)A(1,2),B(3,4).
(1)求AB的長(zhǎng)度;
(2)求AB的直線方程.

查看答案和解析>>

科目: 來源: 題型:

現(xiàn)有兩只口袋A,B,口袋A中裝著編號(hào)分別為1,3,5,7,9的五個(gè)形狀完全相同的小球,口袋B中裝著編號(hào)分別為2,4,6,8的四個(gè)形狀完全相同的小球,某人先從口袋A中隨機(jī)摸出一小球,記編號(hào)為a,然后從口袋B中摸小球,若所得小球的編號(hào)為2a,則停止,否則再?gòu)目诖麭中剩余的小球中摸一球,將從口袋B中所得小球的編號(hào)相加,若和為2a,則停止,否則一直摸下去,直到和為2a為止,或者直到小球摸完為停止.
(1)求此人只摸兩次的概率;
(2)若此人摸小球的次數(shù)X與所得獎(jiǎng)金的函數(shù)關(guān)系為Y=100(5-X),求獎(jiǎng)金Y的分布列與期望.

查看答案和解析>>

科目: 來源: 題型:

為應(yīng)對(duì)艾滋病對(duì)人類的威脅,現(xiàn)在甲、乙、丙三個(gè)研究所獨(dú)立研制艾滋病疫苗,他們能夠成功研制出疫苗的概率分別是
1
2
1
3
,
1
4
,求:
(1)恰有一個(gè)研究所研制成功的概率;
(2)若想在到研制成功(即至少有一個(gè)研究所研制成功)的概率不低于
99
100
,至少需要多少個(gè)乙這樣的研究所?(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目: 來源: 題型:

解不等式:cosα>-
1
2

查看答案和解析>>

科目: 來源: 題型:

已知等比數(shù)列an的公比為q>1,又a172=a24,求使a1+a2+…+an
1
a1
+
1
a2
+
1
a3
+…+
1
an
成立的自然數(shù)n的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

甲船在點(diǎn)A發(fā)現(xiàn)乙船在北偏東60°的B處,|AB|=b里,且乙船以每小時(shí)a里的速度向正北行駛,已知甲船的速度是每小時(shí)
3
a里,問:甲船以什么方向前進(jìn),才能與乙船最快相遇,相遇時(shí)甲船行駛了多少小時(shí)?

查看答案和解析>>

科目: 來源: 題型:

已知sinα=
5
5
,tanβ=
1
3
,且α、β∈(0,
π
2
).
(1)求cosα.
(2)求tan(α+β)的值.

查看答案和解析>>

科目: 來源: 題型:

已知(1+2
x
n的展開式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,又等于它后一項(xiàng)系數(shù)的
5
6

(1)求展開式中含有x2的項(xiàng);
(2)求展開式中偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和.

查看答案和解析>>

科目: 來源: 題型:

已知直四棱柱ABCD-A1B1C1D1,AA1=2,底面ABCD是直角梯形,A是直角,AB∥CD,AB=4,AD=2,DC=1.

(1)求C1到AB的距離;
(2)求異面直線BC1與DC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

在直角坐標(biāo)平面內(nèi),將每個(gè)點(diǎn)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)45°的變換R所對(duì)應(yīng)的矩陣為M,將每個(gè)點(diǎn)橫、縱坐標(biāo)分別變?yōu)樵瓉淼?span id="rl33tj1" class="MathJye">
2
倍的變換T所對(duì)應(yīng)的矩陣為N.
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)求曲線xy=1先在變換R作用下,然后在變換T作用下得到的曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案