相關(guān)習題
 0  231013  231021  231027  231031  231037  231039  231043  231049  231051  231057  231063  231067  231069  231073  231079  231081  231087  231091  231093  231097  231099  231103  231105  231107  231108  231109  231111  231112  231113  231115  231117  231121  231123  231127  231129  231133  231139  231141  231147  231151  231153  231157  231163  231169  231171  231177  231181  231183  231189  231193  231199  231207  266669 

科目: 來源: 題型:解答題

1.連擲兩次骰子得到點數(shù)分別為m和n,記向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1)
(1)記$\overrightarrow a$⊥$\overrightarrow b$為事件A,求事件A發(fā)生的概率;
(2)若$\overrightarrow a$與$\overrightarrow b$的夾角為θ,記θ∈(0,$\frac{π}{2}$)為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知數(shù)列{an}是等差數(shù)列,且a1+a7+a13=-π,則sina7=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知全集U=R,若集合M={0,1,$\frac{π}{2}$},N={y|y=cosx,x∈M},則M與N的關(guān)系用韋恩(Venn)圖可以表示為( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.曲線$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的長度是( 。
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)直線BC的方程;
(2)△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖1,矩形ABCD中,AB=12,AD=6,E、F分別為CD、AB邊上的點,且DE=3,BF=4,將△BCE沿BE折起至△PBE位置(如圖2所示),連結(jié)AP、PF,其中PF=2$\sqrt{5}$.

(1)求證:PF⊥平面ABED;
(2)求點A到平面PBE的距離.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)p為非負實數(shù),隨機變量ξ的分布列為:
ξ012
P$\frac{1}{2}$-pp$\frac{1}{2}$
則D(ξ)的最大值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知各項均不為0的等差數(shù)列{an}前n項和為Sn,滿足S4=2a5,a1a2=a4,數(shù)列{bn}滿足bn+1=2bn,b1=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{{{a_n}{b_n}}}{2}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點分別為F1,F(xiàn)2,直線y=x-1過橢圓的右焦點F2且與橢圓交于P,Q兩點,若△F1PQ的周長為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過點M(2,0)的直線l與橢圓C交于不同兩點E,F(xiàn),求$\overrightarrow{ME}$•$\overrightarrow{MF}$取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2-4x+c,且 f (0)=-5,f (x)<0的解集是(-1,5).
(1)求 f (x)的解析式;
(2)求函數(shù) f (x)在x∈[0,3]上的值域;
(3)設(shè)g(x)=f (x)-mx,且g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案