相關(guān)習(xí)題
 0  231143  231151  231157  231161  231167  231169  231173  231179  231181  231187  231193  231197  231199  231203  231209  231211  231217  231221  231223  231227  231229  231233  231235  231237  231238  231239  231241  231242  231243  231245  231247  231251  231253  231257  231259  231263  231269  231271  231277  231281  231283  231287  231293  231299  231301  231307  231311  231313  231319  231323  231329  231337  266669 

科目: 來源: 題型:選擇題

13.在極坐標(biāo)平面內(nèi),點(diǎn)M($\frac{π}{3}$,200π),N(-$\frac{π}{3}$,201π),G(-$\frac{π}{3}$,-200π),H(2π+$\frac{π}{3}$,200π)中互相重合的兩個(gè)點(diǎn)是(  )
A.M和NB.M和GC.M和HD.N和H

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在以O(shè)為頂點(diǎn)的三棱錐中,過O的三條棱兩兩相交都是30°,在一條棱上取A、B兩點(diǎn),OA=4cm,OB=3cm,以A、B為端點(diǎn)用一條繩子緊繞三棱錐的側(cè)面一周(繩和側(cè)面無摩擦),求此繩在A、B兩點(diǎn)間的最短繩長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:選擇題

11.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}}\right.$(t為參數(shù)),則直線l傾斜角的余弦值為( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,直線AB經(jīng)過⊙O上一點(diǎn)C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點(diǎn),⊙O交直線OB于E、D.
(Ⅰ)證明:直線AB與⊙O相切;
(Ⅱ)若∠CED的正切值為$\frac{1}{2}$,求OA的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:解答題

9.長(zhǎng)方體ABCD-A1B1C1D1中,AB=2AD=2AA1=2,P為A1B1中點(diǎn).
(Ⅰ)求證:CP⊥平面AD1P;
(Ⅱ)求點(diǎn)P到平面ACD1的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點(diǎn)A,B,C所確定的平面上,則該正三棱錐的表面積是( 。
A.3$\sqrt{2}$+3B.3($\sqrt{15}$+$\sqrt{3}$)C.3$\sqrt{15}$+3$\sqrt{2}$D.3($\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

科目: 來源: 題型:解答題

7.在等式cos2x=2cos2x-1(x∈R)的兩邊對(duì)x求導(dǎo),得(-sin2x)•2=4cosx(-sinx),化簡(jiǎn)后得等式sin2x=2cosxsinx.
(1)利用上述方法,試由等式(1+x)n=Cn0+Cn1x+…+Cnn-1xn-1+Cnnxn(x∈R,正整數(shù)n≥2),
①證明:n[(1+x)n-1-1]=$\sum_{k=2}^n$k$C_n^k$xk-1;
②求C101+2C102+3C103+…+10C1010
(2)對(duì)于正整數(shù)n≥3,求 $\sum_{k=1}^n$(-1)kk(k+1)Cnk

查看答案和解析>>

科目: 來源: 題型:選擇題

6.如圖,正方形ABCD的邊長(zhǎng)等于2,等腰三角形PAB中PA=PB,且平面PAB⊥平面ABCD,若直線PD與平面ABCD所成的角為$\frac{π}{4}$,則PA的長(zhǎng)為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}$,點(diǎn)M的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$).
(1)寫出曲線C的參數(shù)方程,并求曲線C在點(diǎn)(1,1)處的切線的極坐標(biāo)方程;
(2)若點(diǎn)N為曲線C上的動(dòng)點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

4.ABCDEF是邊長(zhǎng)為4的正六邊形,PA⊥面ABCDEF,PA=2,則P到BC的距離為4,P到CD的距離為2$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案