相關(guān)習(xí)題
 0  233183  233191  233197  233201  233207  233209  233213  233219  233221  233227  233233  233237  233239  233243  233249  233251  233257  233261  233263  233267  233269  233273  233275  233277  233278  233279  233281  233282  233283  233285  233287  233291  233293  233297  233299  233303  233309  233311  233317  233321  233323  233327  233333  233339  233341  233347  233351  233353  233359  233363  233369  233377  266669 

科目: 來(lái)源: 題型:填空題

16.如果實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{4x-y+4≥0}\end{array}\right.$,則(x-2)2+y2的最小值是2.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若對(duì)任意給定的m∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2a2m2+am,則正實(shí)數(shù)a的取值范圍是(  )
A.$[{\frac{1}{2},+∞})$B.($\frac{1}{2}$,+∞)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)$z=\frac{4+bi}{1-i}({b∈R})$的實(shí)部為-1,則復(fù)數(shù)z-b在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.如圖是某幾何體的三視圖,則該幾何體的體積是(  )
A.3B.$\frac{9}{2}$C.9D.27

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=$\sqrt{2}$.
(1)求證:BD⊥平面ACC1A1
(2)求異面直線A1C1與BD所成的角.
(3)求三棱錐D1-ABD的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的三位數(shù):
(1)其中個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(2)被5整除的數(shù)有多少個(gè)?

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折起,使面BAC⊥面DAC,則四面體A-BCD的外接球的體積為( 。
A.$\frac{125}{12}$πB.$\frac{125}{9}$πC.$\frac{125}{6}$πD.$\frac{125}{3}$π

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.曲線y=2x2-1在點(diǎn)(-1,1)的切線方程為4x+y+3=0.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ex,g(x)=ax2+bx+c.
(1)若f(x)的圖象與g(x)的圖象的一個(gè)公共點(diǎn)在y軸上,且在該店處兩條曲線的切線相同,求b和c的值;
(2)若a=c=1,b=0,試著比較f(x)與g(x)的大小,并說(shuō)明理由;
(3)若函數(shù)t(x)與函數(shù)f(x)的圖象關(guān)于直線y=x對(duì)稱,且直線y=g′(x)是函數(shù)t(x)圖象的切線,求a+b的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.△ABC中,角A,B,C,所對(duì)的邊分別是a,b,c,其中b=2,cosA=$\frac{1}{3}$.
(1)若a=3,求邊c;
(2)若$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,且|$\overrightarrow{AD}$|=$\frac{4\sqrt{2}}{3}$,求△ABD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案