相關(guān)習題
 0  237880  237888  237894  237898  237904  237906  237910  237916  237918  237924  237930  237934  237936  237940  237946  237948  237954  237958  237960  237964  237966  237970  237972  237974  237975  237976  237978  237979  237980  237982  237984  237988  237990  237994  237996  238000  238006  238008  238014  238018  238020  238024  238030  238036  238038  238044  238048  238050  238056  238060  238066  238074  266669 

科目: 來源: 題型:填空題

14.一個袋中裝有10個大小相同的黑球,白球和紅球.已知從袋中任意摸出2個球,至少得到1個白球的概率是$\frac{7}{9}$.從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,則隨機變量ξ的數(shù)學期望Eξ=$\frac{3}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.(理科)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為$\sqrt{3}$.
(文科)已知數(shù)列{an}的前n項和Sn=n2-9n+1,則an=$\left\{\begin{array}{l}{-7,n=1}\\{2n-10,n≥2}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.點A(x,y)是-300°角終邊與單位圓的交點,則$\frac{y}{x}$的值為(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

11.(1)已知cos(15°+α)=$\frac{15}{17}$,α∈(0°,90°),求sin(15°-α) 的值.
(2)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$,求β的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.若θ是直線l的傾斜角,且sinθ+cosθ=$\frac{{\sqrt{5}}}{5}$,則l的斜率為( 。
A.-$\frac{1}{2}$B.-$\frac{1}{2}$或-2C.$\frac{1}{2}$或2D.-2

查看答案和解析>>

科目: 來源: 題型:選擇題

9.下列說法正確的是( 。
A.函數(shù)$y=sin(2x+\frac{π}{3})$在區(qū)間$(-\frac{π}{3},\frac{π}{6})$內(nèi)單調(diào)遞增
B.函數(shù)y=cos4x的最小正周期為2π
C.函數(shù)y=cos(x+$\frac{π}{3}$)的圖象是關(guān)于點($\frac{π}{6}$,0)成中心對稱的圖形
D.函數(shù)y=tan(x+$\frac{π}{3}$)的圖象是關(guān)于直線x=$\frac{π}{6}$成軸對稱的圖形

查看答案和解析>>

科目: 來源: 題型:選擇題

8.$sin\frac{2017}{6}π$的值等( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在如圖所示程序框圖中,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出“恭喜中獎!”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖是一“T”型水渠的平面視圖(俯視圖),水渠的南北方向和東西方向軸截面均為矩形,南北向渠寬為4m,東西向渠寬$\sqrt{2}m$(從拐角處,即圖中A,B處開始).假定渠內(nèi)的水面始終保持水平位置(即無高度差).
(1)在水平面內(nèi),過點A的一條直線與水渠的內(nèi)壁交于P,Q兩點,且與水渠的一邊的夾角為$θ(0<θ<\frac{π}{2})$,將線段PQ的長度l表示為θ的函數(shù);
(2)若從南面漂來一根長為7m的筆直的竹竿(粗細不計),竹竿始終浮于水平面內(nèi),且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡。空堈f明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+alnx,若對任意兩個不等的正實數(shù)x1,x2都有$\frac{{f(x{\;}_1)-f({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

同步練習冊答案