相關習題
 0  239580  239588  239594  239598  239604  239606  239610  239616  239618  239624  239630  239634  239636  239640  239646  239648  239654  239658  239660  239664  239666  239670  239672  239674  239675  239676  239678  239679  239680  239682  239684  239688  239690  239694  239696  239700  239706  239708  239714  239718  239720  239724  239730  239736  239738  239744  239748  239750  239756  239760  239766  239774  266669 

科目: 來源: 題型:選擇題

17.已知復數(shù)z=x+(x-a)i,若對任意實數(shù)x∈(1,2),恒有|z|>|$\overline{z}$+i|,則實數(shù)a的取值范圍為(  )
A.(-∞,$\frac{1}{2}$]B.(-∞,$\frac{1}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.下面四個推理中,屬于演繹推理的是(  )
A.觀察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,則$\frac{3}{5}$<$\frac{3+m}{5+m}$(m為正整數(shù))
B.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函數(shù)的導函數(shù)為奇函數(shù)
C.在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積比為1:8
D.所有平行四邊形對角線互相平分,矩形是平行四邊形,所以矩形的對角線互相平分

查看答案和解析>>

科目: 來源: 題型:選擇題

15.某體育彩票規(guī)定:從01到36個號中抽出7個號為一注,每注2元.某人想先選定吉利號18,然后再從01到17個號中選出3個連續(xù)的號,從19到29個號中選出2個連續(xù)的號,從30到36個號中選出1個號組成一注.若這個人要把這種要求的號全買,至少要花的錢數(shù)為( 。
A.2000元B.3200元C.1800元D.2100元

查看答案和解析>>

科目: 來源: 題型:選擇題

14.有6名學生,其中有3名會唱歌,2名會跳舞,1名既會唱歌又會跳舞,現(xiàn)從中選出2名會唱歌的,1名會跳舞的,去參加文藝演出,求所有不同的選法種數(shù)為( 。
A.18B.15C.16D.25

查看答案和解析>>

科目: 來源: 題型:選擇題

13.方程($\frac{1}{3}$)x-x=0的解有(  )
A.0個B.3個C.2個D.1個

查看答案和解析>>

科目: 來源: 題型:填空題

12.若定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調(diào)遞減,則將$f({-\frac{5}{2}})$,f(7),f(4)從小到大順序排列為$f(7)<f({-\frac{5}{2}})<f(4)$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.袋中有形狀、大小都相同的6只球,其中1只白球,2只紅球,3只黃球,從中隨機先后摸出2只球,在已知摸出第一只球為白球的情況下,第二只球為黃球的概率為$\frac{3}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知p:${log_2}({{x^2}-3x})>2$,q:$\frac{x-4}{x+1}>0$,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:選擇題

9.不等式|2a-b|+|a+b|≥|a|(|x-1|+|x+1|)對于任意不為0的實數(shù)a,b恒成立,則實數(shù)x的范圍為( 。
A.$(-∞,-\frac{1}{2}]∪[\frac{1}{2},+∞)$B.$[-\frac{1}{2},\frac{1}{2}]$C.$(-∞,-\frac{3}{2}]∪[\frac{3}{2},+∞)$D.$[-\frac{3}{2},\frac{3}{2}]$

查看答案和解析>>

科目: 來源: 題型:解答題

8.設α、β∈(0,$\frac{π}{2}$),試用柯西不等式證明 $\frac{1}{co{s}^{2}α}$+$\frac{1}{si{n}^{2}α•co{s}^{2}β•si{n}^{2}β}$≥9.

查看答案和解析>>

同步練習冊答案