相關習題
 0  240621  240629  240635  240639  240645  240647  240651  240657  240659  240665  240671  240675  240677  240681  240687  240689  240695  240699  240701  240705  240707  240711  240713  240715  240716  240717  240719  240720  240721  240723  240725  240729  240731  240735  240737  240741  240747  240749  240755  240759  240761  240765  240771  240777  240779  240785  240789  240791  240797  240801  240807  240815  266669 

科目: 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{2}{x}-\frac{1}{e},x<0}\\{\frac{lnx}{x},x>0}\end{array}\right.$若關于x的方程f(x)=t有三個不同的解,其中最小的解為a,則$\frac{t}{a}$的取值范圍為(-$\frac{1}{{e}^{2}}$,0).

查看答案和解析>>

科目: 來源: 題型:填空題

12.若不等式[2tx2-(t2-1)x+2]•lnx≤0對任意x∈(0,+∞)恒成立,則實數(shù)t的值是-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.將容量為100的樣本數(shù)據(jù)分為8個組,如下表:
 組號 1 2 3 4 5 6 7 8
 頻數(shù)10 13 x 14 15 13 12 9
則第3組的頻率為( 。
A.0.03B.0.07C.0.14D.0.21

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,A1、A2、B1、B2是橢圓的四個頂點,且$\overrightarrow{{A}_{1}{B}_{1}}$•$\overrightarrow{{A}_{2}{B}_{2}}$=3.
(1)求橢圓C的方程;
(2)P是橢圓C上異于頂點的任意點,直線B2P交x軸于點Q,直線A1B2交A2P于點E,設A2P的斜率為k,EQ的斜率為m,問:2m-k能不能為定值?若能為定值,請求出這個定值;若不能為定值,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)增函數(shù),則實數(shù)m的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|=$\frac{1}{3}$.
(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x-1)2+y2=$\frac{1}{16}$,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2 截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

7.給出下列命題,其中所有正確命題的序號為③④⑥
①$\overrightarrow a=(sinα,1),\overrightarrow b=(cosα,-1),則存在實數(shù)α,使得\overrightarrow a⊥\overrightarrow b$
②若$\overrightarrow a=(2,2),\overrightarrow b=(sinα-1,\frac{1}{2}-cosα),則存在實數(shù)α,使得\overrightarrow a∥\overrightarrow b$
③函數(shù)$y=sin(x+\frac{3π}{2})$是偶函數(shù)
④x=$\frac{π}{8}是函數(shù)y=sin(2x+\frac{5π}{4})$的一條對稱抽方程
⑤若α,β是第一象限的角且,α>β,則sinα>sinβ
⑥$若α,β∈({\frac{π}{2},π})且tanα<\frac{1}{tanβ},則π<α+β<\frac{3π}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若存在兩個正實數(shù)m、n,使得等式a(lnn-lnm)(4em-2n)=3m成立(其中e為自然對數(shù)的底數(shù)),則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.(0,$\frac{3}{2e}$]C.[$\frac{3}{2e}$,+∞)D.(-∞,0)∪[$\frac{3}{2e}$,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)g(x)=x2+bx+c,且關于x的不等式g(x)<0的解集為(-$\frac{7}{9}$,0).
(1)求實數(shù)b,c的值;
(2)若不等式0≤g(x)-$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$<$\frac{2}{9}$對于任意n∈N*恒成立,求滿足條件的實數(shù)x的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的右頂點為(1,0),且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)設橢圓C的上焦點為F,過F且斜率為-$\sqrt{2}$的直線l與橢圓C交于A,B兩點,若$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$(其中O為坐標原點),求點P的坐標及四邊形OAPB的面積.

查看答案和解析>>

同步練習冊答案