相關(guān)習(xí)題
 0  240640  240648  240654  240658  240664  240666  240670  240676  240678  240684  240690  240694  240696  240700  240706  240708  240714  240718  240720  240724  240726  240730  240732  240734  240735  240736  240738  240739  240740  240742  240744  240748  240750  240754  240756  240760  240766  240768  240774  240778  240780  240784  240790  240796  240798  240804  240808  240810  240816  240820  240826  240834  266669 

科目: 來源: 題型:解答題

17.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x)且方程f(x)=2x有兩個相等實數(shù)根
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[4m,4n],如果存在,求出符合條件的所有m,n的值,如果不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若集合A={1,2,3,4},B={1,2,3},則從集合A到集合B的不同映射的個數(shù)是( 。
A.12B.24C.64D.81

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)為二次函數(shù),滿足f(0)=1,且f(x+1)-f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(2x)=2x+a在x∈(-∞,2]上有兩個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖給出了一個程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下兩個焦點分別為F1,F(xiàn)2,過點F1與y軸垂直的直線交橢圓C于M、N兩點,△MNF2的面積為$\sqrt{3}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$
(Ⅰ)求橢圓C的標(biāo)準方程;
(Ⅱ)已知O為坐標(biāo)原點,直線l:y=kx+m與y軸交于點P(P不與原點O重合),與橢圓C交于A,B兩個不同的點,使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求2x+y的取值范圍;
(2)若x+y+a≥0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.不等式$\frac{x}{x-1}$≥-1的解集為(  )
A.(-∞,$\frac{1}{2}$]∪(1,+∞)B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,1)∪(1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點$A(\sqrt{3},0)$和點B(0,2),斜率為k(k≠0)的直線經(jīng)過點P(2,0)且交E于M,N兩點.
(1)求橢圓E的方程;
(2)當(dāng)△AOM與△AON面積比值為7,求實數(shù)k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知:f(x)=x2+bx+c,不等式f(x)<0的解集是(0,4).
(1)求f(x)的解析式;
(2)若對于任意的x∈[-1,3],則不等式f(x)-t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=alnx-(a+2)x+x2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意a∈[4,10],x1,x2∈[1,2],恒有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{λ}{{x}_{1}{x}_{2}}$成立,試求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案