科目: 來源: 題型:
【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過600 元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球,則打6折;若摸到1個紅球,則打7折;若沒摸到紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費了 600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)已知點P在線段EF上,=2.求三棱錐E-APD的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】A.B兩種規(guī)格的產品都需娶在甲、乙兩臺機器上各加工一道工序才能成為成品,巳知A產品需要在甲機器上加工3小時,在乙機器上加工1小時;B產品需要在甲機器上加工1小時,在乙機器上加工3小時,在一個工作日內,甲機器至多只能使用11小時,乙機器至多只能使用9小時,A產品每件利潤300元,B成品每件利潤400元,則這兩臺機器在一個工作日內創(chuàng)造的最大利潤是___________元.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展開式中x的系數恰好是數列{an}的前n項和Sn .
(1)求數列{an}的通項公式;
(2)數列{bn}滿足 ,記數列{bn}的前n項和為Tn , 求證:Tn<1.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,已知點P( ,1),直線l的參數方程為(t為參數)若以O為極點,以Ox為極軸,選擇相同的單位長度建立極坐標系,則曲線C的極坐標方程為ρ= cos(θ- )
(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于A,B兩點,求點P到A,B兩點的距離之積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A﹣BCD的外接球,BC=3,AB=2 ,點E在線段BD上,且BD=3BE,過點E作球O的截面,則所得截面圓面積的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中社團進行社會實踐,對歲的人群隨機抽取n人進行了一次是否開通“微博”的調查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調查分別得到如圖所示統(tǒng)計表和各年齡段人數頻率分布直方圖:
完成以下問題:
(Ⅰ)補全頻率分布直方圖并求的值;
(Ⅱ)從歲年齡段的“時尚族”中采用分層抽樣法抽取人參加網絡時尚達人大賽,其中選取人作為領隊,記選取的名領隊中年齡在歲的人數為,求的分布列
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學作為藍色海洋教育特色學校,隨機抽取100名學生,進行一次海洋知識測試,按測試成績(假設考試成績均在[65,90)內)分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測試成績在[80,85)內的頻率;
(2)從第三、四、五組學生中用分層抽樣的方法抽取6名學生組成海洋知識宣講小組,定期在校內進行義務宣講,并在這6名學生中隨機選取2名參加市組織的藍色海洋教育義務宣講隊,求第四組至少有1名學生被抽中的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com