科目: 來(lái)源: 題型:
【題目】在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專(zhuān)賣(mài)店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開(kāi)支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷(xiāo)量Q(百件)與銷(xiāo)售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開(kāi)支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-x2-2x,g(x)=
(1)求g[f(1)]的值;
(2)若方程g[f(x)]-a=0有4個(gè)實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過(guò)4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求函數(shù)v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且 ,則函數(shù)g(x)=lg x的圖象與函數(shù)f(x)的圖象的交點(diǎn)個(gè)數(shù)為( )
A.3
B.5
C.9
D.10
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若直角坐標(biāo)平面內(nèi)的兩個(gè)不同點(diǎn) 、 滿足條件:① 、 都在函數(shù) 的圖像上;② 、 關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì) 是函數(shù) 的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì) 與 看作同一對(duì)“友好點(diǎn)對(duì)”).已知函數(shù) ,則此函數(shù)的“友好點(diǎn)對(duì)”有( )對(duì).
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )
A.多于4個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= lnx-x+ ,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點(diǎn),求a的取值范圍;
(2)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時(shí),記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對(duì)數(shù)的底數(shù)).
(1)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a∈ 時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com