相關習題
 0  262285  262293  262299  262303  262309  262311  262315  262321  262323  262329  262335  262339  262341  262345  262351  262353  262359  262363  262365  262369  262371  262375  262377  262379  262380  262381  262383  262384  262385  262387  262389  262393  262395  262399  262401  262405  262411  262413  262419  262423  262425  262429  262435  262441  262443  262449  262453  262455  262461  262465  262471  262479  266669 

科目: 來源: 題型:

【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù):

7327 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計該運動員射擊4次至少擊中3次的概率為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調性;

(2)若對任意,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調性;

(2)當時,設,,滿足恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為奇函數(shù),為偶函數(shù),且.

1)求的解析式及定義域;

2)如函數(shù)在區(qū)間上為單調函數(shù),求實數(shù)的范圍.

3)若關于的方程有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,

1)若函數(shù)為增函數(shù),求實數(shù)的值;

2)若函數(shù)為偶函數(shù),對于任意,任意,使得成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如表:

損壞餐椅數(shù)

未損壞餐椅數(shù)

學習雷鋒精神前

50

150

200

學習雷鋒精神后

30

170

200

80

320

400

求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?

請說明是否有以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神

有關?參考公式:,

查看答案和解析>>

科目: 來源: 題型:

【題目】我國自改革開放以來,生活越來越好,肥胖問題也目漸顯著,為分析肥胖程度對總膽固醇與空腹血糖的影響,在肥胖人群中隨機抽出8人,他們的肥胖指數(shù)值、總膽固醇指標值單位: )、空腹血糖指標值(單位: )如下表所示:

(1)用變量的相關系數(shù),分別說明指標值與值、指標值與值的相關程度;

(2)求的線性回歸方程,已知指標值超過5.2為總膽固醇偏高,據(jù)此模型分析當值達到多大時,需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01)

參考公式:相關系數(shù)

, .

參考數(shù)據(jù): ,,,

,,

查看答案和解析>>

科目: 來源: 題型:

【題目】據(jù)不完全統(tǒng)計,某廠的生產(chǎn)原料耗費(單位:百萬元)與銷售額(單位:百萬元)如下:

2

4

6

8

30

40

50

70

變量、為線性相關關系.

1)求線性回歸方程必過的點;

2)求線性回歸方程;

3)若實際銷售額要求不少于百萬元,則原材料耗費至少要多少百萬元。

,

查看答案和解析>>

科目: 來源: 題型:

【題目】某濕地公園內有一條河,現(xiàn)打算建一座橋將河兩岸的路連接起來,剖面設計圖紙如下:

其中,點軸上關于原點對稱的兩點,曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對應函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點,設計時要求:保持兩曲線在各銜接處()的切線的斜率相等.

(1)求曲線段在圖紙上對應函數(shù)的解析式,并寫出定義域;

(2)車輛從經(jīng)爬坡,定義車輛上橋過程中某點所需要的爬坡能力為:(該點與橋頂間的水平距離)(設計圖紙上該點處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:游客踏乘;蓄電池動力;內燃機動力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個單位長度表示實際長度米,試問三種類型的觀光車是否都可以順利過橋?

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)“T函數(shù)”.

(I)試判斷函數(shù)f1(x)=x2f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;

(Ⅱ)f (x)“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證f (x0) =x0;

(Ⅲ)試寫出一個“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個數(shù)最少.(只需寫出結論

查看答案和解析>>

同步練習冊答案