同一平面中的三個力大小分別為F1=6N、F2=7N、F3=8N,這三個力沿不同方向作用于同一物體,該物體作勻速運動。若撤消F3,這時物體所受F1、F2的合力大小等于________N。

8
試題分析:當(dāng)一個物體受到三個力而處于平衡狀態(tài)時,其中一個力的合力與其他兩個力的合力的關(guān)系為等大反向,所以本題中撤消F3,這時物體所受F1、F2的合力大小等于F1和F2的合力,即為8N
考點:考查力的合成問題
點評:本題難度較小,理解結(jié)論:當(dāng)一個物體受到三個力而處于平衡狀態(tài)時,其中一個力的合力與其他兩個力的合力的關(guān)系為等大反向
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:021

關(guān)于力的合成和分解,下列說法中正確的是

[  ]

A.一個力的分力可以比這個力的本身大

B.兩個大小恒定的力,它們合力的大小是不能改變的

C.同一平面內(nèi)三個大小相等的力之間,只要它們?nèi)我鈨蓚力的夾角都相等,它們的合力一定等于零

D.要把一個大小、方向都已確定的已知力分解成兩個分力,只知兩個分力的大小是無法辦到的

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第七部分 熱學(xué)

熱學(xué)知識在奧賽中的要求不以深度見長,但知識點卻非常地多(考綱中羅列的知識點幾乎和整個力學(xué)——前五部分——的知識點數(shù)目相等)。而且,由于高考要求對熱學(xué)的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓(xùn)增加了負擔(dān)。因此,本部分只能采新授課的培訓(xùn)模式,將知識點和例題講解及時地結(jié)合,爭取讓學(xué)員學(xué)一點,就領(lǐng)會一點、鞏固一點,然后再層疊式地往前推進。

一、分子動理論

1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)

對于分子(單原子分子)間距的計算,氣體和液體可直接用,對固體,則與分子的空間排列(晶體的點陣)有關(guān)。

【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點表示)和氯離子(圖中的黑色圓點表示)組成的,離子鍵兩兩垂直且鍵長相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個距離最近的鈉離子中心之間的距離。

【解說】題意所求即圖中任意一個小立方塊的變長(設(shè)為a)的倍,所以求a成為本題的焦點。

由于一摩爾的氯化鈉含有NA個氯化鈉分子,事實上也含有2NA個鈉離子(或氯離子),所以每個鈉離子占據(jù)空間為 v = 

而由圖不難看出,一個離子占據(jù)的空間就是小立方體的體積a3 ,

即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

【答案】3.97×10-10m 。

〖思考〗本題還有沒有其它思路?

〖答案〗每個離子都被八個小立方體均分,故一個小立方體含有×8個離子 = 分子,所以…(此法普遍適用于空間點陣比較復(fù)雜的晶體結(jié)構(gòu)。)

2、物質(zhì)內(nèi)的分子永不停息地作無規(guī)則運動

固體分子在平衡位置附近做微小振動(振幅數(shù)量級為0.1),少數(shù)可以脫離平衡位置運動。液體分子的運動則可以用“長時間的定居(振動)和短時間的遷移”來概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無定所”,不停地遷移(常溫下,速率數(shù)量級為102m/s)。

無論是振動還是遷移,都具備兩個特點:a、偶然無序(雜亂無章)和統(tǒng)計有序(分子數(shù)比率和速率對應(yīng)一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關(guān)。

氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時的速率,vP == ;平均速率:所有分子速率的算術(shù)平均值, ==;方均根速率:與分子平均動能密切相關(guān)的一個速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

【例題2】證明理想氣體的壓強P = n,其中n為分子數(shù)密度,為氣體分子平均動能。

【證明】氣體的壓強即單位面積容器壁所承受的分子的撞擊力,這里可以設(shè)理想氣體被封閉在一個邊長為a的立方體容器中,如圖6-3所示。

考查yoz平面的一個容器壁,P =            ①

設(shè)想在Δt時間內(nèi),有Nx個分子(設(shè)質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動量定理,容器壁承受的壓力

 F ==                            ②

在氣體的實際狀況中,如何尋求Nx和vx呢?

考查某一個分子的運動,設(shè)它的速度為v ,它沿x、y、z三個方向分解后,滿足

v2 =  +  + 

分子運動雖然是雜亂無章的,但仍具有“偶然無序和統(tǒng)計有序”的規(guī)律,即

 =  +  +  = 3                    ③

這就解決了vx的問題。另外,從速度的分解不難理解,每一個分子都有機會均等的碰撞3個容器壁的可能。設(shè)Δt = ,則

 Nx = ·3N = na3                         ④

注意,這里的是指有6個容器壁需要碰撞,而它們被碰的幾率是均等的。

結(jié)合①②③④式不難證明題設(shè)結(jié)論。

〖思考〗此題有沒有更簡便的處理方法?

〖答案〗有。“命令”所有分子以相同的速率v沿+x、?x、+y、?y、+z、?z這6個方向運動(這樣造成的宏觀效果和“雜亂無章”地運動時是一樣的),則 Nx =N = na3 ;而且vx = v

所以,P =  = ==nm = n

3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時存在,宏觀上感受到的是其合效果。

分子力是保守力,分子間距改變時,分子力做的功可以用分子勢能的變化表示,分子勢能EP隨分子間距的變化關(guān)系如圖6-4所示。

分子勢能和動能的總和稱為物體的內(nèi)能。

二、熱現(xiàn)象和基本熱力學(xué)定律

1、平衡態(tài)、狀態(tài)參量

a、凡是與溫度有關(guān)的現(xiàn)象均稱為熱現(xiàn)象,熱學(xué)是研究熱現(xiàn)象的科學(xué)。熱學(xué)研究的對象都是有大量分子組成的宏觀物體,通稱為熱力學(xué)系統(tǒng)(簡稱系統(tǒng))。當(dāng)系統(tǒng)的宏觀性質(zhì)不再隨時間變化時,這樣的狀態(tài)稱為平衡態(tài)。

b、系統(tǒng)處于平衡態(tài)時,所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

c、熱力學(xué)第零定律(溫度存在定律):若兩個熱力學(xué)系統(tǒng)中的任何一個系統(tǒng)都和第三個熱力學(xué)系統(tǒng)處于熱平衡狀態(tài),那么,這兩個熱力學(xué)系統(tǒng)也必定處于熱平衡。這個定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學(xué)系統(tǒng)都具有一個共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個數(shù)值相等的狀態(tài)函數(shù),這個狀態(tài)函數(shù)被定義為溫度。

2、溫度

a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標(biāo)。典型的溫標(biāo)有攝氏溫標(biāo)t、華氏溫標(biāo)F(F = t + 32)和熱力學(xué)溫標(biāo)T(T = t + 273.15)。

b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動自由度t + 轉(zhuǎn)動自由度r + 振動自由度s 。對單原子分子i = 3 ,“剛性”〈忽略振動,s = 0,但r = 2〉雙原子分子i = 5 。對于三個或三個以上的多原子分子,i = 6 。能量按自由度是均分的),所以說溫度是物質(zhì)分子平均動能的標(biāo)志。

c、熱力學(xué)第三定律:熱力學(xué)零度不可能達到。(結(jié)合分子動理論的觀點2和溫度的微觀解釋很好理解。)

3、熱力學(xué)過程

a、熱傳遞。熱傳遞有三種方式:傳導(dǎo)(對長L、橫截面積S的柱體,Q = K

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第一部分  力&物體的平衡

第一講 力的處理

一、矢量的運算

1、加法

表達: +  =  。

名詞:為“和矢量”。

法則:平行四邊形法則。如圖1所示。

和矢量大。篶 =  ,其中α為的夾角。

和矢量方向:之間,和夾角β= arcsin

2、減法

表達: =  。

名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。

差矢量大。篴 =  ,其中θ為的夾角。

差矢量的方向可以用正弦定理求得。

一條直線上的矢量運算是平行四邊形和三角形法則的特例。

例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

解說:如圖3所示,A到B點對應(yīng)T的過程,A到C點對應(yīng)T的過程。這三點的速度矢量分別設(shè)為、。

根據(jù)加速度的定義 得:,

由于有兩處涉及矢量減法,設(shè)兩個差矢量  , ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

本題只關(guān)心各矢量的大小,顯然:

 =  =  =  ,且: =  , = 2

所以: =  =  , =  =  。

(學(xué)生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?

答:否;不是。

3、乘法

矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。

⑴ 叉乘

表達:× = 

名詞:稱“矢量的叉積”,它是一個新的矢量。

叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對應(yīng)由作成的平行四邊形的面積。

叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

顯然,××,但有:×= -×

⑵ 點乘

表達:· = c

名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標(biāo)量。

點積的大。篶 = abcosα,其中α為的夾角。

二、共點力的合成

1、平行四邊形法則與矢量表達式

2、一般平行四邊形的合力與分力的求法

余弦定理(或分割成RtΔ)解合力的大小

正弦定理解方向

三、力的分解

1、按效果分解

2、按需要——正交分解

第二講 物體的平衡

一、共點力平衡

1、特征:質(zhì)心無加速度。

2、條件:Σ = 0 ,或  = 0 , = 0

例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標(biāo)示,求橫桿的重心位置。

解說:直接用三力共點的知識解題,幾何關(guān)系比較簡單。

答案:距棒的左端L/4處。

(學(xué)生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?

解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。

答:不會。

二、轉(zhuǎn)動平衡

1、特征:物體無轉(zhuǎn)動加速度。

2、條件:Σ= 0 ,或ΣM+ =ΣM- 

如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。

3、非共點力的合成

大小和方向:遵從一條直線矢量合成法則。

作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。

第三講 習(xí)題課

1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。

解說:法一,平行四邊形動態(tài)處理。

對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。

由于G的大小和方向均不變,而N1的方向不可變,當(dāng)β增大導(dǎo)致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。

顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當(dāng)N2垂直N1時,N2取極小值,且N2min = Gsinα。

法二,函數(shù)法。

看圖8的中間圖,對這個三角形用正弦定理,有:

 =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

答案:當(dāng)β= 90°時,甲板的彈力最小。

2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?

解說:靜力學(xué)旨在解決靜態(tài)問題和準(zhǔn)靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。

靜力學(xué)的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。

水平方向合力為零,得:支持力N持續(xù)增大。

物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。

對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。

答案:B 。

3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。

解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學(xué)矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

(學(xué)生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                   ⑴

由胡克定律:F = k(- R)                ⑵

幾何關(guān)系:= 2Rcosθ                     ⑶

解以上三式即可。

答案:arccos 。

(學(xué)生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

答:變;不變。

(學(xué)生活動)反饋練習(xí):光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

解:和上題完全相同。

答:T變小,N不變。

4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

解說:練習(xí)三力共點的應(yīng)用。

根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。

答案:R 。

(學(xué)生活動)反饋練習(xí):靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

解:三力共點知識應(yīng)用。

答: 。

4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

解說:本題考查正弦定理、或力矩平衡解靜力學(xué)問題。

對兩球進行受力分析,并進行矢量平移,如圖16所示。

首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設(shè)為α。

而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設(shè)為F 。

對左邊的矢量三角形用正弦定理,有:

 =          ①

同理,對右邊的矢量三角形,有: =                                ②

解①②兩式即可。

答案:1 : 。

(學(xué)生活動)思考:解本題是否還有其它的方法?

答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。

應(yīng)用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

解:此時用共點力平衡更加復(fù)雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

答:2 :3 。

5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?

解說:這是一個典型的力矩平衡的例題。

以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設(shè)木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

f R + N(R + L)= G(R + L)           

球和板已相對滑動,故:f = μN        ②

解①②可得:f = 

再看木板的平衡,F(xiàn) = f 。

同理,木板插進去時,球體和木板之間的摩擦f′=  = F′。

答案: 。

第四講 摩擦角及其它

一、摩擦角

1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 

3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。

二、隔離法與整體法

1、隔離法:當(dāng)物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。

在處理各隔離方程之間的聯(lián)系時,應(yīng)注意相互作用力的大小和方向關(guān)系。

2、整體法:當(dāng)各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。

應(yīng)用整體法時應(yīng)注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

三、應(yīng)用

1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。

解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學(xué)生留下深刻印象。

法一,正交分解。(學(xué)生分析受力→列方程→得結(jié)果。)

法二,用摩擦角解題。

引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

最后,μ= tgφm 

答案:0.268 。

(學(xué)生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?

解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。

答:Gsin15°(其中G為物體的重量)。

2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。

解說:

本題旨在顯示整體法的解題的優(yōu)越性。

法一,隔離法。簡要介紹……

法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。

做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。

答案:26.0N 。

(學(xué)生活動)地面給斜面體的支持力是多少?

解:略。

答:135N 。

應(yīng)用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。

解說:這是一道難度較大的靜力學(xué)題,可以動用一切可能的工具解題。

法一:隔離法。

由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

Fx = f + mgsinθ

Fy + mgcosθ= N

且 f = μN = Ntgθ

綜合以上三式得到:

Fx = Fytgθ+ 2mgsinθ               ①

對斜面體,只看水平方向平衡就行了——

P = fcosθ+ Nsinθ

即:4mgsinθcosθ=μNcosθ+ Nsinθ

代入μ值,化簡得:Fy = mgcosθ      ②

②代入①可得:Fx = 3mgsinθ

最后由F =解F的大小,由tgα= 解F的方向(設(shè)α為F和斜面的夾角)。

答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

法二:引入摩擦角和整體法觀念。

仍然沿用“法一”中關(guān)于F的方向設(shè)置(見圖21中的α角)。

先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。

在圖22右邊的矢量三角形中,有: =      ⑵

注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

解⑴⑵⑶式可得F和α的值。

查看答案和解析>>

同步練習(xí)冊答案