如圖所示,一半徑r=0.2m的1/4光滑圓弧形槽底端B與水平傳帶相接,傳送帶的運行速度為v0=4m/s,長為L=1.25m,滑塊與傳送帶間的動摩擦因數(shù)μ=0.2,DEF為固定于豎直平面內(nèi)的一段內(nèi)壁光滑的中空方形細(xì)管,EF段被彎成以O(shè)為圓心、半徑R=0.25m的一小段圓弧,管的D端彎成與水平傳帶C端平滑相接,O點位于地面,OF 連線豎直.一質(zhì)量為M=0.1kg的物塊a從圓弧頂端A點無初速滑下,滑到傳送帶上后做勻加速運動,過后滑塊被傳送帶送入管DEF,管內(nèi)頂端F點放置一質(zhì)量為m=0.1kg的物塊b.已知a、b兩物塊均可視為質(zhì)點,a、b橫截面略小于管中空部分的橫截面,重力加速度g取10m/s2.求:
(1)滑塊a到達(dá)底端B時的速度vB;
(2)滑塊a剛到達(dá)管頂F點時對管壁的壓力;
(3)滑塊a滑到F點時與b發(fā)生完全非彈性正碰,飛出后落地,求滑塊a的落地點到O點的距離x(不計空氣阻力)
分析:(1)滑塊從A下滑到B的過程中,支持力不做功,由機械能守恒定律求解速度vB
(2)先研究滑塊傳送帶上的運動過程,再研究滑塊沖上細(xì)管的過程:滑塊在傳送帶上做勻加速運動,根據(jù)牛頓第二定律和運動學(xué)公式結(jié)合求出滑塊到達(dá)C點時的速度,滑塊從C至F,由機械能守恒定律求出到達(dá)F點時的速度,由牛頓第二定律求出管道對滑塊的彈力,由牛頓第三定律即可解得滑塊在F點時對管壁的壓力;
(3)a、b碰撞過程,遵守動量守恒,即可求出碰后的共同速度,之后兩滑塊一起做平拋運動,運用運動的分解法求解滑塊a的落地點到O點的距離x.
解答:解:(1)設(shè)滑塊到達(dá)B點的速度為vB,由機械能守恒定律,有
    Mgr=
1
2
M
v
2
B

得:vB=
2gr
=2m/s
(2)滑塊在傳送帶上做勻加速運動,受到傳送帶對它的滑動摩擦力,
由牛頓第二定律有  μMg=Ma
滑塊對地位移為L,末速度為vC,設(shè)滑塊在傳送帶上一直加速
由速度位移關(guān)系式 2aL=
v
2
C
-
v
2
B

得vC=3m/s<4m/s,可知滑塊與傳送帶未達(dá)相同的速度.
滑塊從C至F,由機械能守恒定律,有
 
1
2
M
v
2
C
=MgR+
1
2
M
v
2
F

得 vF=2m/s 
在F處,對滑塊由牛頓第二定律
  Mg+N=M
v
2
F
R

得N=0.6N 由牛頓第三定律得管上壁受壓力為0.6N,壓力方向豎直向上
(3)由題意知碰后物塊a、b共速,設(shè)速度為v,
碰撞過程由動量守恒得
   MvF=(M+m)v
得  v=1m/s
離開F點后物塊a、b一起做平拋運動,則有
  x=vt
  R=
1
2
gt2

解得,x=
5
10
m

答:(1)滑塊a到達(dá)底端B時的速度vB是2m/s.
(2)滑塊a剛到達(dá)管頂F點時對管壁的壓力為0.6N,壓力方向豎直向上.
(3)滑塊a滑到F點時與b發(fā)生完全非彈性正碰,飛出后落地,滑塊a的落地點到O點的距離x是
5
10
m
點評:本題按時間順序進(jìn)行分析,關(guān)鍵要把握每個過程所遵守的物理規(guī)律,運用機械能守恒、牛頓第二定律、運動學(xué)公式結(jié)合進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2013?德州一模)如圖所示,一半徑R=1m的圓盤水平放置,在其邊緣 E點固定一小桶(可視為質(zhì)點).在圓盤直徑 DE 的正上方平行放置一水平滑道 BC,滑道右端 C點 與圓盤圓心O在同一豎直線上,且豎直高度 h=1.25m.AB為一豎直面內(nèi)的光滑四分之一圓弧軌道,半徑r=0.45m,且與水平滑道相切與B點.一質(zhì)量m=0.2kg的滑塊(可視為質(zhì)點)從A點由靜止釋放,當(dāng)滑塊經(jīng)過B點時,圓盤從圖示位置以一定的角速度ω繞通過圓心的豎直軸勻速轉(zhuǎn)動,最終物塊由C 點水平拋出,恰好落入圓盤邊緣的小桶內(nèi).已知滑塊與滑道 BC間的摩擦因數(shù)μ=0.2.(取g=10m/s2)求
(1)滑塊到達(dá)B點時對軌道的壓力
(2)水平滑道 BC的長度;
(3)圓盤轉(zhuǎn)動的角速度ω應(yīng)滿足的條件.

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,一半徑R=0.2m的水平圓盤繞過圓心的豎直軸轉(zhuǎn)動,圓盤邊緣有一質(zhì)量m=1.0kg的小滑塊.當(dāng)圓盤轉(zhuǎn)動的角速度達(dá)到某一數(shù)值時,滑塊從圓盤邊緣滑落,經(jīng)光滑的過渡圓管(圖中圓管未畫出)進(jìn)入軌道ABC.已知AB段為光滑的弧形軌道,A點離B點所在水平面的高度h=1.2m;BC斜面與AB軌道對接且傾角為37°,滑塊與圓盤及BC斜面間的動摩擦因數(shù)均為μ=0.5,滑塊在運動過程中始終未脫離軌道,不計在過渡圓管處和B點的機械能損失,設(shè)最大靜摩擦力等于滑動摩擦力,取g=10m/s2,sin37°=0.6,cos37°=0.8
(1)當(dāng)圓盤的角速度多大時,滑塊從圓盤上滑落?
(2)求滑塊到達(dá)B點時的機械能(取地面為零勢能參考面).
(3)從滑塊到達(dá)B點時起,經(jīng)0.6s正好通過C點,求BC之間的距離.

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,一半徑R=0.2m的水平圓盤繞過圓心的豎直軸轉(zhuǎn)動,圓盤邊緣有一質(zhì)量m=1.0kg的小滑塊.當(dāng)圓盤轉(zhuǎn)動的角速度逐漸增大到某一數(shù)值時,滑塊剛好從圓盤邊緣處滑落,進(jìn)入軌道ABC.已知AB段為光滑的圓弧形軌道,軌道半徑r=2.5m,B點是圓弧形軌道與水平地面的相切點,A點與B點的高度差h=1.2m;傾斜軌道BC與圓軌道AB對接且傾角為37°,滑塊與圓盤及BC軌道間的動摩擦因數(shù)均為μ=0.5,滑塊在運動過程中始終未脫離軌道,不計滑塊在A點和B點處的機械能損失,設(shè)最大靜摩擦力等于滑動摩擦力,取g=10m/s2,sin37°=0.6,cos37°=0.8.
(1)求滑塊剛好從圓盤上滑落時,圓盤的角速度;
(2)求滑塊到達(dá)弧形軌道的B點時對軌道的壓力大小;
(3)滑塊從到達(dá)B點時起,經(jīng)0.6s正好通過C點,求BC之間的距離.

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,一半徑r = 0.2m的1/4光滑圓弧形槽底端B與水平傳帶相接,傳送帶的運行速度為v0=4m/s,長為L=1.25m , 滑塊與傳送帶間的動摩擦因數(shù)μ=0.2,DEF為固定于豎直平面內(nèi)的一段內(nèi)壁光滑的中空方形細(xì)管,EF段被彎成以O(shè)為圓心、半徑R = 0.25m的一小段圓弧,管的D端彎成與水平傳帶C端平滑相接,O點位于地面,OF 連線豎直.一質(zhì)量為M=0.2kg的物塊a從圓弧頂端A點無初速滑下,滑到傳送帶上后做勻加速運動,過后滑塊被傳送帶送入管DEF,管內(nèi)頂端F點放置一質(zhì)量為m=0.1kg的物塊b.已知a、b兩物塊均可視為質(zhì)點,a、b橫截面略小于管中空部分的橫截面,重力加速度g取10m/s2.求:

(1)滑塊a到達(dá)底端B時的速度vB; 

(2)滑塊a剛到達(dá)管頂F點時對管壁的壓力;

 (3)滑塊a滑到F點時與b發(fā)生完全非彈性正碰,飛出后落地,求滑塊a的落地點到O點的距離x(不計空氣阻力)。

查看答案和解析>>

同步練習(xí)冊答案