滑雪運動員由d點以初速度v0=20m/s沿水平方向沖出跳臺,雪坡ab長L=80m,與水平地面夾角θ=37°,如圖所示.由于緩沖作用,運動員落到斜面或水平地面后,垂直接觸面的速度突變?yōu)榱愣叫薪佑|面的速度保持不變,滑板與雪面間的動摩擦因數(shù)u=0.1,不計空氣阻力和通過銜接處b的能量損失(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:
(1)運動員沖出跳臺后與雪面的撞擊點離d點的距離.
(2)運動員停止運動時離b點的距離.

解:(1)假設(shè)運動員落在斜面上的p點,距拋出點的距離為L,則
Lcosθ=v0t ①

聯(lián)立①②解得L=75m,時間t=3s.
即運動員落在斜面上,距a點75m.
(2)由題給條件,在p點碰撞后的速度沿斜面方向,則
vp=v0cosθ+gtsinθ=34m/s.
在pb過程中有:mgsinθ-μmgcosθ=ma1
解得
設(shè)運動員經(jīng)b點的速度為vb,則
設(shè)最后停在離b點為x的e點,運動員在水平面上的加速度a2=μg.
運動的位移x==604m.
答:(1)運動員沖出跳臺后與雪面的撞擊點離d點的距離為75m.
(2)運動員停止運動時離b點的距離為604m.
分析:(1)運動員離開跳臺后做平拋運動,根據(jù)豎直位移和水平位移的關(guān)系求出平拋運動的時間,以及落在斜面上距離a點的距離.
(2)運動員落到斜面或水平地面后,垂直接觸面的速度突變?yōu)榱愣叫薪佑|面的速度保持不變,根據(jù)速度分解求出在p點碰撞后的速度沿斜面方向的速度,根據(jù)牛頓第二定律結(jié)合運動學(xué)公式求出到達(dá)底端的速度,再根據(jù)牛頓第二定律求出運動員在水平面上的加速度,從而求出運動員停止運動時離b點的距離.
點評:本題綜合考查了平拋運動、勻變速直線運動,難度中等,關(guān)鍵理清運動過程,結(jié)合牛頓第二定律和運動學(xué)公式進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

精英家教網(wǎng)滑雪運動員由d點以初速度v0=20m/s沿水平方向沖出跳臺,雪坡ab長L=80m,與水平地面夾角θ=37°,如圖所示.由于緩沖作用,運動員落到斜面或水平地面后,垂直接觸面的速度突變?yōu)榱愣叫薪佑|面的速度保持不變,滑板與雪面間的動摩擦因數(shù)u=0.1,不計空氣阻力和通過銜接處b的能量損失(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:
(1)運動員沖出跳臺后與雪面的撞擊點離d點的距離.
(2)運動員停止運動時離b點的距離.

查看答案和解析>>

同步練習(xí)冊答案