方程(組)與不等式(組)綜合題舉例
程鵬
一次方程(組)與一元一次不等式(組)緊密相連的綜合題,是近年中考試卷里出現(xiàn)的一類新題型。下面通過精選例題說明其解法。
例1. 已知關于x的方程的解是非負數(shù),則m與n的關系是( )
分析:解已知方程可得,
由題意知,
故
于是,選A。
例2. 已知x、y同時滿足三個條件:
①,②,③,則( )
分析:解由①、②聯(lián)立組成的方程組可得
又由條件③知,
,
解之得,故選D。
例3. 若方程組的解為,且的取值范圍是( )
A.
B.
C.
D.
分析:把題設兩方程的兩邊分別相減得
,
由此得。
因為,
所以,
即。
故,選B。
例4. 若不等式組的解集為,那么的值等于( )。
分析:由;
由,因為題設不等式組有解集,
所以,又由題意可得
,
故。
例5. 為了迎接2002年世界杯足球賽的到來,某足球協(xié)會舉辦了一次足球聯(lián)賽,其記分規(guī)則如下表:
勝一場
平一場
負一場
積分
3
1
0
當比賽進行到第12輪結(jié)束(每隊均需比賽12場)時,A隊共積19分。請通過計算,判斷A隊勝、平、負各幾場?
分析:設A隊勝x場、平y(tǒng)場、負z場,
則有,把x當成已知數(shù),
可解得。由題意,
均為整數(shù),
所以,
解得,于是x可取4、5、6,由此可得三組解(略)。
從以上幾例可以看出:解答這類題時,可先把題設中的方程(組)的解求出來,再根據(jù)題目中的限制條件列不等式(組)進行解答;或先求出題設不等式(組)的解集,再與已知解集進行比較,從而列方程(組)施行解答。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com