雅禮中學2008屆高三第八次質檢數(shù)學(理科)試卷

 

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇)題兩部分,滿分150分.考試時量120分鐘.

第Ⅰ卷(選擇題)

一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的.

1.已知集合,則的    (   )

       A  充分而不必要條件                             B  必要而不充分條件

       C  充要條件                                           D  既不充分也不必要條件

試題詳情

2.下列函數(shù)中周期為1的奇函數(shù)是                                            (   )

試題詳情

                 B     

試題詳情

                      D 

試題詳情

3.下列不等式中恒成立的個數(shù)有                                                                           (   )

試題詳情

       ①                                 ②

試題詳情

       ③             ④

       A  4                        B  3                        C  2                        D  1

試題詳情

4.25人排成5×5方陣,從中選出3人,要求其中任意2人既不同行也不同列,則不同的選出方法種數(shù)為                      (   )

       A  600                        B  300                        C  100                        D  60

試題詳情

5.已知的前n項和                 (   )

A  67                 B  65                C  6l                  D  56

試題詳情

6.對于平面直角坐標系內任意兩點)、,),定義它們之間的一種“距離”:‖‖=??+??.給出下列三個命題:

①若點C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

試題詳情

②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB;

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命題的個數(shù)為                                                    (   )

A  0                B  1                 C  2             D  3

試題詳情

7.如圖,設O點在內部,且有,則的面積與的面積的比為                                                              (   )

試題詳情

A  2             B              

試題詳情

C  3             D   

試題詳情

8. 已知點P 是拋物線上一點,設點P到此拋物線準線的距離為,到直線的距離為,則的最小值是                           (   )

試題詳情

    A  5              B  4                 C              D

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

10.在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個偶數(shù)2、4;再染4后面最鄰近的3個連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個連續(xù)偶數(shù)10、12、14、16;再染此后最鄰近的5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個紅色子數(shù)列中,由1開始的第2003個數(shù)是                                                  (   )

A  3844              B  3943                C  3945                 D  4006

 

試題詳情

二、填空題:本大題共5小題,每小題5分,共25分,把答案填在答題卡中對應題號后的橫線上.

11.某校為了了解高三年級學生的身體狀況,現(xiàn)用分層抽樣的方法,從全段600名學生中抽取60名進行體檢,如果在抽取的學生中有男生36名,則在高三年級中共有女生      名.

試題詳情

12.,則                 

試題詳情

13.通過兩個定點 且在軸上截得的弦長等于的圓的方程是      

試題詳情

14.已知平面α、β和直線m,給出條件:①m∥α;②m⊥α;③;④α⊥β;⑤α∥β.

試題詳情

)當滿足條件           時,m∥β;

試題詳情

)當滿足條件           時,m⊥β  (注意:只要填條件中的序號)

試題詳情

15.設是定義在上的偶函數(shù),其圖像關于直線對稱,對任意,,有,,則

試題詳情

       ;

試題詳情

)若記,那么         

 

試題詳情

三、解答題:本大題共6小題,共75分. 解答應寫出文字說明,證明過程或演算步驟.

16.(本小題滿分12分)

試題詳情

已知△ABC的三邊成等比數(shù)列,且,

試題詳情

(Ⅰ)求;                 

試題詳情

(Ⅱ)求的面積。

 

試題詳情

17.(本小題滿分12分)

試題詳情

  設輪船有兩個發(fā)動機,輪船有四個發(fā)動機,如果半數(shù)或半數(shù)以上的發(fā)動機沒有故障,輪船就能夠安全航行.現(xiàn)設每個發(fā)動機發(fā)生故障的概率的函數(shù):(其中為發(fā)動機啟動后所經歷的時間,為正常數(shù),每個發(fā)動機工作相互獨立).

試題詳情

(Ⅰ)分別求出輪船安全航行的概率(用表示);

試題詳情

(Ⅱ)根據(jù)時間的變化,比較輪船和輪船哪一個更能安全航行(除發(fā)動機發(fā)生故障外,不考慮其他因素).

 

試題詳情

18.(本小題滿分12分)

試題詳情

如圖,等腰直角△中,平面,,.

試題詳情

(Ⅰ)求二面角的大;

試題詳情

(Ⅱ)求點到平面的距離;

試題詳情

19.(本小題滿分13分)

如圖所示,某校把一塊邊長為2a的等邊△ABC的邊角地(如圖)辟為生物園,圖中DE把生物園分成面積相等的兩部分,DAB上,EAC上.

(Ⅰ)設ADxxa),EDy,求用x表示y的函數(shù)關系式;?

(Ⅱ)如果DE是灌溉水管的位置,為了省錢,希望它最短,DE的位置應該在哪里?如果DE是參觀線路,即希望它最長,DE的位置又應該在哪里?請給予證明.?

試題詳情

 

 

 

 

 

試題詳情

20.(本小題滿分13分)

試題詳情

如圖,設是橢圓的左焦點,直線為對應的準線,直線軸交于點,線段為橢圓的長軸,已知,且

試題詳情

(Ⅰ)求證:對于任意的割線,恒有;

試題詳情

(Ⅱ)求三角形△ABF面積的最大值.

 

 

 

 

試題詳情

21.(本小題滿分13分)

試題詳情

已知點

試題詳情

(Ⅰ)求的定義域;

試題詳情

(Ⅱ)求證:;

試題詳情

(Ⅲ)求證:數(shù)列{an}前n項和

 

 

 

試題詳情

 

一、選擇題:ADBAA    BCCDB

二、填空題

11.;        12. ;          13

14.()③⑤  ()②⑤              15. (;    () 0

三、解答題:

16.解:(1)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(2)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)

(Ⅱ)

1當時,則.此時輪船更安全.

2當時,則.此時輪船和輪船一樣安全.

3當時,則.此時輪船更安全.

解:方法一

(Ⅰ)取的中點,連結,由,又,故,所以即為二面角的平面角.

在△中,,,,

由余弦定理有

,

所以二面角的大小是.(6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                             …(12分)

 

19.解: (Ⅰ)∵△ABC的邊長為2a,DAB上,則ax2a,?

∵△ADE面積等于△ABC面積的一半,

x?AEsin60°=?2a2,?

解得AE,?

在△ADE中,由余弦定理:?

y2x2?cos60°,?

y2x22a2

y  (ax2a)?

(Ⅱ)證明:∵y  (ax2a),令x2t,則a2t4a2

y,設ft)=ta2t4a2)?

t∈(a2,2a2)時,任取a2t1t22a2,?

ft1)-ft2)=(t1)-(t2

=(t1t2)?,?

a2t1t22a2?

t1t2>0,t1t2>0,t1t24a4<0?

ft1)-ft2)>0,即ft1)>ft2)?

fx)在(a22a2)上是減函數(shù).?

同理可得,fx)在(2a24a2)上是增函數(shù).?

又∵f2a2)=4a2,fa2)=f4a2)=5a2,當t2a2時,fx)有最小值,即xa時,y有最小值,且ymin=a,此時DEBCADa;當ta24a2時,fx)有最大值,即xa2a時,y有最大值,且ymaxa,此時DEABAC邊上的中線.?

 

20.解:(Ⅰ)∵,∴,

又∵,∴,

,

∴橢圓的標準方程為.                                      ………(3分)

的斜率為0時,顯然=0,滿足題意,

的斜率不為0時,設方程為,

代入橢圓方程整理得:

,

          ,

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:

當且僅當,即(此時適合于的條件)取到等號.

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

21.解:(Ⅰ)由

故x>0或x≤-1

f(x)定義域為                          …………………………(4分)

(Ⅱ)

下面使用數(shù)學歸納法證明:

①在n=1時,a1=1,<a1<2,則n=1時(*)式成立.

②假設n=k時成立,

要證明:

只需

只需(2k+1)3≤8k(k+1)2

只需1≤4k2+2k

而4k2+2k≥1在k≥1時恒成立.

只需證:4k2+11k+8>0,而4k2+11k+8>0在k≥1時恒成立.

于是:

因此得證.

綜合①②可知(*)式得證.從而原不等式成立.                     ………………9分

(Ⅲ)要證明:

由(2)可知只需證:

…………(**)

下面用分析法證明:(**)式成立。

要使(**)成立,只需證:

即只需證:(3n-2)3n>(3n-1)3(n-1)

只需證:2n>1

而2n>1在n≥1時顯然成立.故(**)式得證:

于是由(**)式可知有:

因此有:

                     ……………………………………(13分)

 

 

 

雅禮中學2008屆高三第八次質檢數(shù)學(理科)試題參考答案

 

一、選擇題:ADBAA    BCCDB

二、填空題

11.;        12. ;          13

14.()③⑤  ()②⑤              15. (;    () 0

三、解答題:

16.解:(1)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(2)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)

(Ⅱ)

1當時,則.此時輪船更安全.

2當時,則.此時輪船和輪船一樣安全.

3當時,則.此時輪船更安全.

解:方法一

(Ⅰ)取的中點,連結,由,又,故,所以即為二面角的平面角.

在△中,,,,

由余弦定理有

,

所以二面角的大小是.(6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點到平面的距離即為△的邊上的高.

.                             …(12分)

 

19.解: (Ⅰ)∵△ABC的邊長為2a,DAB上,則ax2a,?

∵△ADE面積等于△ABC面積的一半,

x?AEsin60°=?2a2,?

解得AE,?

在△ADE中,由余弦定理:?

y2x2?cos60°,?

y2x22a2

y  (ax2a)?

(Ⅱ)證明:∵y  (ax2a),令x2t,則a2t4a2

y,設ft)=ta2t4a2)?

t∈(a2,2a2)時,任取a2t1t22a2,?

ft1)-ft2)=(t1)-(t2

=(t1t2)?,?

a2t1t22a2?

t1t2>0,t1t2>0,t1t24a4<0?

ft1)-ft2)>0,即ft1)>ft2)?

fx)在(a2,2a2)上是減函數(shù).?

同理可得,fx)在(2a2,4a2)上是增函數(shù).?

又∵f2a2)=4a2fa2)=f4a2)=5a2,當t2a2時,fx)有最小值,即xa時,y有最小值,且ymin=a,此時DEBCADa;當ta24a2時,fx)有最大值,即xa2a時,y有最大值,且ymaxa,此時DEABAC邊上的中線.?

 

20.解:(Ⅰ)∵,∴,

又∵,∴,

,

∴橢圓的標準方程為.                                      ………(3分)

的斜率為0時,顯然=0,滿足題意,

的斜率不為0時,設

同步練習冊答案