2008年鄂州市初中升學(xué)考試

數(shù)學(xué)試卷

考生注意:

1.本卷共三道大題,27道小題,滿分120分,考試時(shí)間120分鐘.

2.考時(shí)不準(zhǔn)使用計(jì)算器.

一、選擇題(每小題3分,共42分)

1.下列計(jì)算正確的是(    )

試題詳情

A.             B.

試題詳情

C.                      D.

試題詳情

2.已知,則的取值范圍是(    )

試題詳情

A.            B.             C.              D.

試題詳情

3.?dāng)?shù)據(jù)的眾數(shù)為,則這組數(shù)據(jù)的方差是(    )

試題詳情

A.2                 B.              C.             D.

試題詳情

4.不等式組的解集在數(shù)軸上可表示為(    )

試題詳情

試題詳情

5.如圖是由幾個(gè)小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示在該位置的小立方塊的個(gè)數(shù),那么這個(gè)幾何體的主視圖是(     )

試題詳情

試題詳情

 

試題詳情

6.如圖,已知中,,,是高的交點(diǎn),則線段的長(zhǎng)度為(    )

試題詳情

試題詳情

A.                       B.4                            C.                            D.5

試題詳情

7.在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是(    )

試題詳情

試題詳情

8.如圖,利用標(biāo)桿測(cè)量建筑物的高度,如果標(biāo)桿長(zhǎng)為1.2米,測(cè)得米,米.則樓高是(    )

試題詳情

試題詳情

A.6.3米                    B.7.5米                     C.8米                       D.6.5米

試題詳情

9.因?yàn)?sub>,

試題詳情

所以;因?yàn)?sub>,,所以,由此猜想,推理知:一般地當(dāng)為銳角時(shí)有,由此可知:(    )

試題詳情

A.                      B.                    C.                    D.

試題詳情

10.下列方程中,有兩個(gè)不等實(shí)數(shù)根的是(    )

試題詳情

A.                                              B.             

試題詳情

C.                                     D.

試題詳情

11.如圖,直線軸,軸分別相交于兩點(diǎn),上一點(diǎn),且,則(    )

試題詳情

A.1                           B.2                            C.3                            D.4

試題詳情

12.是半徑為的圓內(nèi)接三角形,以為圓心,為半徑的與邊相切于點(diǎn),則的值為(    )

試題詳情

A.           B.4              C.         D.

試題詳情

13.小明從圖5所示的二次函數(shù)的圖象中,觀察得出了下面五條信息:①;②;③;④;⑤,你認(rèn)為其中正確信息的個(gè)數(shù)有(     )

試題詳情

A.2個(gè)         B.3個(gè)         C.4個(gè)         D.5個(gè)

試題詳情

14.如圖,中,,,分別為邊的中點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)的位置,則整個(gè)旋轉(zhuǎn)過程中線段所掃過部分的面積(即陰影部分面積)為(    )

試題詳情

試題詳情

A.           B.           C.            D.

試題詳情

二、填空題(每小題3分,共18分)

15.在“”方框中,任意填上“”或“”.能夠構(gòu)成完全平方式的概率是         

試題詳情

16.下列給出的一串?dāng)?shù):2,5,10,17,26,?,50.仔細(xì)觀察后回答:缺少的數(shù)?是         

試題詳情

17.如圖,正方體的棱長(zhǎng)為2,為邊的中點(diǎn),則以三點(diǎn)為頂點(diǎn)的三角形面積為          

試題詳情

試題詳情

18.已知在中,半徑,是兩條平行弦,且,,則弦的長(zhǎng)為         

試題詳情

19.已知為方程的二實(shí)根,則         

試題詳情

20.如圖,在中,,點(diǎn),已知,則高的長(zhǎng)為         

試題詳情

試題詳情

三、解答題(21題6分,26題10分,27題12分,其余每題8分,總計(jì)60分)

21.設(shè)是關(guān)于的一元二次方程的兩實(shí)根,當(dāng)為何值時(shí),有最小值?最小值是多少?

試題詳情

22.如圖,教室窗戶的高度為2.5米,遮陽蓬外端一點(diǎn)到窗戶上椽的距離為,某一時(shí)刻太陽光從教室窗戶射入室內(nèi),與地面的夾角,為窗戶的一部分在教室地面所形成的影子且長(zhǎng)為米,試求的長(zhǎng)度.(結(jié)果帶根號(hào))

試題詳情

試題詳情

23.小王和小明用如圖所示的同一個(gè)轉(zhuǎn)盤進(jìn)行“配紫色”游戲,游戲規(guī)則如下:連續(xù)轉(zhuǎn)動(dòng)兩次轉(zhuǎn)盤.如果兩次轉(zhuǎn)出的顏色相同或配成紫色(若其中一次轉(zhuǎn)盤轉(zhuǎn)出藍(lán)色,另一次轉(zhuǎn)出紅色,則配成紫色),則小王得1分,否則小明得1分(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)

(1)請(qǐng)你通過列表法分別求出小王和小明獲勝的概率.

(2)你認(rèn)為這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改規(guī)則,使游戲?qū)﹄p方公平.

試題詳情

試題詳情

24.甲乙兩人同時(shí)登西山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

試題詳情

(1)甲登山的速度是每分鐘        米,乙在地提速時(shí)距地面的高度          米.

試題詳情

(2)若乙提速后,乙的速度是甲登山速度的3倍,請(qǐng)分別求出甲、乙二人登山全過程中,登山時(shí)距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.

試題詳情

(3)登山多長(zhǎng)時(shí)間時(shí),乙追上了甲?此時(shí)乙距地的高度為多少米?

試題詳情

試題詳情

25.如圖,已知:邊長(zhǎng)為1的圓內(nèi)接正方形中,為邊的中點(diǎn),直線交圓于點(diǎn).

試題詳情

(1)求弦的長(zhǎng).

試題詳情

(2)若是線段上一動(dòng)點(diǎn),當(dāng)長(zhǎng)為何值時(shí),三角形與以為頂點(diǎn)的三角形相似.

試題詳情

試題詳情

26.為了更好治理洋瀾湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買10臺(tái)污水處理設(shè)備.現(xiàn)有兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:

 

試題詳情

試題詳情

價(jià)格(萬元/臺(tái))

試題詳情

試題詳情

處理污水量(噸/月)

240

200

試題詳情

經(jīng)調(diào)查:購買一臺(tái)型設(shè)備比購買一臺(tái)型設(shè)備多2萬元,購買2臺(tái)型設(shè)備比購買3臺(tái)型設(shè)備少6萬元.

試題詳情

(1)求的值.

(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案.

(3)在(2)問的條件下,若每月要求處理洋瀾湖的污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢的購買方案.

試題詳情

27.(1)如圖,是拋物線圖象上的三點(diǎn),若三點(diǎn)的橫坐標(biāo)從左至右依次為1,2,3.求的面積.

試題詳情

試題詳情

(2)若將(1)問中的拋物線改為,其他條件不變,請(qǐng)分別直接寫出兩種情況下的面積.

試題詳情

(3)現(xiàn)有一拋物線組:;;;

試題詳情

;;依據(jù)變化規(guī)律,請(qǐng)你寫出拋物線組第個(gè)式子的函數(shù)解析式;現(xiàn)在軸上有三點(diǎn).經(jīng)過軸作垂線,分別交拋物線組;;.記,,,,試求的值.

試題詳情

(4)在(3)問條件下,當(dāng)時(shí)有的值不小于,請(qǐng)?zhí)角蟠藯l件下正整數(shù)是否存在最大值,若存在,請(qǐng)求出此值;若不存在,請(qǐng)說明理由.

試題詳情


同步練習(xí)冊(cè)答案