證明:對于D中的最小數(shù)有 .< 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=x2,f2=
1x
(x<0)
是否為各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a0=0,am=2m.記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>

如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=
2
5
,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點(diǎn)O到山腳修路的造價為a萬元/km,原有公路改建費(fèi)用為
a
2
萬元/km、當(dāng)山坡上公路長度為lkm(1≤l≤2)時,其造價為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=
3
(km)

(Ⅰ)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價最;
(Ⅱ)對于(I)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價最。
(Ⅲ)在AB上是否存在兩個不同的點(diǎn)D′,E′,使沿折線PD′E′O修建公路的總造價小于(Ⅱ)中得到的最小總造價,證明你的結(jié)論、
精英家教網(wǎng)

查看答案和解析>>

(09年海淀區(qū)期中理)(14分) 

設(shè)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)以及D中的任意兩數(shù),恒有,則稱為定義在D上的C函數(shù).

   (Ⅰ)試判斷函數(shù),是否為各自定義域上的C函數(shù),并說明理由;

   (Ⅱ)已知R上的C函數(shù),m是給定的正整數(shù),設(shè),且,記. 對于滿足條件的任意函數(shù),試求的最大值;

   (Ⅲ)若是定義域?yàn)?B>R的函數(shù),且最小正周期為,試證明不是R上的C函數(shù).

查看答案和解析>>

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)數(shù)學(xué)公式是否為各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a0=0,am=2m.記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)是否為各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a=0,am=2m.記Sf=a1+a2+…+am對于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>


同步練習(xí)冊答案