5.如圖1.設P.Q為△ABC內的兩點.且.=+.則△ABP的面積與△ABQ的面積之比為 圖1 圖2 查看更多

 

題目列表(包括答案和解析)

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設截面三角形面積為y,求y的最大值及y取最大值時的x的值;
(2)空間一動點P滿足
SP
=a
SA
+b
SB
+c
SC
(a+b+c=1),在第(1)問的條件下,求|
SP
|
的最小值,并求取得最小值時a,b,c的值;
(3)在第(1)問的條件下,設F是CD的中點,問是否存在這樣的動點Q,它在此棱錐的表面(包含底面ABCD)運動,且FQ⊥AC?如果存在,計算其運動軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點在直線l:x=1上,離心率e=
1
2
.設P,Q為橢圓上不同的兩點,且弦PQ的中點T在直線l上,點R(
1
4
,0).
(1)求橢圓的方程;
(2)試證:對于所有滿足條件的P,Q,恒有|RP|=|RQ|;
(3)試判斷△PQR能否為等邊三角形?證明你的結論.

查看答案和解析>>

如圖所示,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)B1作直線交橢圓于PQ兩點,使PB2QB2,求△PB2Q的面積.

 

查看答案和解析>>

一塊邊長為10的正方形紙片,按如圖所示將陰影部分裁下,然后將余下的四個全等的等腰三角形作為側面制作一個正四棱錐S-ABCD(底面是正方形,頂點在底面的射影是底面中心的四棱錐).
(1)過此棱錐的高以及一底邊中點F作棱錐的截面(如圖),設截面三角形面積為y,求y的最大值及y取最大值時的x的值;
(2)空間一動點P滿足(a+b+c=1),在第(1)問的條件下,求的最小值,并求取得最小值時a,b,c的值;
(3)在第(1)問的條件下,設F是CD的中點,問是否存在這樣的動點Q,它在此棱錐的表面(包含底面ABCD)運動,且FQ⊥AC?如果存在,計算其運動軌跡的長度,如果不存在,說明理由.

查看答案和解析>>

設雙曲線(a>0,b>0)的右頂點為A,P是雙曲線上異于頂點的一個動點,從A引雙曲線的兩條漸近線的平行線與直線OP分別交于QR兩點.(如圖)

(1)證明無論P點在什么位置,總有||2=|·|(O為坐標原點);

(2)若以OP為邊長的正方形面積等于以雙曲線實、虛軸長為邊長的矩形的面積,求雙曲線離心率的取值范圍.

查看答案和解析>>


同步練習冊答案