∴a2n+2=2×2 n-1.∴a2n=2 n-2. 又a2n+a2n+1= a2n+2a2n+1=3a2n+1.∴數(shù)列{an}的前2007項的和為a1+( a2+ a3)+ ( a4+ a5)+ ( a6+ a7)+ -+ ( a2006+ a2007)= a1+(3a2+1)+ (3a4+1)+ (3a6+1)+ -+ (3a2006+1)= 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5)= 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5)= 3×(2+22+23+-+21003+1-5×1003=6×(21003-1)+1-5×1003=6×21003- 5020 .故選D. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}中,a1=-27,an+1+an=3n-54(n∈N*).

(1)求證:數(shù)列{a2n}與{a2n-1}(n∈N*)都是等差數(shù)列;

(2)若數(shù)列{an}的前2n項和為T2n,設(shè),且數(shù)列{bn}是等差數(shù)列,求非零常數(shù)c.

查看答案和解析>>

數(shù)列{an},{bn}滿足a11a2r(r0),bnanan1,且{bn}是公比為q(q0)的等比數(shù)列,設(shè)cna2n1a2n(nN*)

(1){cn}的通項公式;

(2)設(shè),r21921q,求數(shù)列{dn}的最大項和最小項的值.

 

查看答案和解析>>

已知數(shù)列{an}滿足a1=1,a2,且[3+(-1)n]an+2=2an-2[(-1)n-1](n=1,2,3,…).

(1)求a3,a4,a5,a6的值并求{an}通項公式;

(2)令bn=a2n-1·a2n,記數(shù)列{bn}的前n項和為Tn,求證:Tn<3.

查看答案和解析>>

已知數(shù)列{an}滿足a1=1,,且bn=a2n-2,n∈N*

(Ⅰ)求a2,a3,a4

(Ⅱ)求證:數(shù)列{bn}是以為公比的等比數(shù)列,并求其通項公式;

(Ⅲ)設(shè),記Sn=C1+C2+…+Cn,求Sn

查看答案和解析>>

已知數(shù)列{an}滿足a1=1,a2,且[3+(-1)n]an+2=2an-2[(-1)n-1](n=1,2,3,…)

(1)求a3,a4,a5,a6的值及數(shù)列{an}的通項公式;

(2)令bn=a2n-1·a2n,記數(shù)列{bn}的前n項和為Tn,求證Tn<3.

查看答案和解析>>


同步練習(xí)冊答案