8.已知.(..且對任意.都有: 查看更多

 

題目列表(包括答案和解析)

已知、,且對任意、都有:

;②

給出以下三個結(jié)論:(1);(2);(3)

其中正確的個數(shù)為

A.3                            B.2                            C.1                            D.0

查看答案和解析>>

已知,、,且對任意、都有:

;②

給出以下三個結(jié)論:(1);(2);(3)

其中正確的個數(shù)為

A.3                            B.2                            C.1                            D.0

查看答案和解析>>

已知定義在R上的函數(shù)f(x)滿足:對任意x∈R,都有f(x)=f(2-x)成立,且當(dāng)x∈(-∞,1)時,(x-1)f′(x)<0(其中f'(x)為f(x)的導(dǎo)數(shù)).設(shè)a=f(0),b=f(
1
2
),c=f(3)
,則a、b、c三者的大小關(guān)系是( 。
A、a<b<c
B、c<a<b
C、c<b<a
D、b<c<a

查看答案和解析>>

已知定義在R上的奇函數(shù)f(x)=x3+bx2+cx+d在x=±1處取得極值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)試證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4成立;
(Ⅲ)若過點P(m,n),(m、n∈R,且|m|<2)可作曲線y=f(x)的三條切線,試求點P對應(yīng)平面區(qū)域的面積.

查看答案和解析>>

已知圓C:x2+y2-6y-16=0與x軸相交于F1、F2,與y軸正半軸相交于B,以F1、F2為焦點,且經(jīng)過點B的橢圓記為G.
(1)求橢圓G的方程;
(2)根據(jù)橢圓的對稱性,任意橢圓都有一個四邊都與橢圓相切的正方形,這個正方形稱為橢圓的外切正方形,試求橢圓G外切正方形四邊所在直線的方程.

查看答案和解析>>

一、選擇題:本大題共8小題,每小題5分,滿分40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

1.D      2.B       3.D      4.A      5.C       6.D      7.C       8.A

 

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計算前兩題得分.

9.                10.(或)                       11.

12.                                             13.                                               14.

15.

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:,………………………………………………   3分

,………………………    3分

(1);…………………………………………………….   2分

(2)因為的解集為,

所以的兩根,………………………………………  2分

,所以,.……………………………………. 2分

 

17.(本小題滿分12分)

解: …………………………………………  2分

…………………………………………     2分

…………………………………………………….     2分

(1)的最大值為、最小值為;……………………………………………… 2分

(2)單調(diào)增,故,……………………………  2分

,

從而的單調(diào)增區(qū)間為.……………………  2分

 

18.(本小題滿分14分)

(1)證明:底面

,,故

,故…………………………………………………   4分

(2)證明:,,故

的中點,故

由(1)知,從而,故

易知,故……………………………………………… 5分

(3)過點,垂足為,連結(jié)

由(2)知,,故是二面角的一個平面角.

設(shè),則,

從而,故.………………   5分

說明:如學(xué)生用向量法解題,則建立坐標系給2分,寫出相關(guān)點的坐標給2分,第(1)問正確給2分,第(2)問正確給4分,第(3)問正確給4分。

 

19.(本小題滿分14分)

解:(1)拋物線方程為………………………………………………………  2分

故焦點的坐標為………………………………………………………… 2分

(2)設(shè)

 

 

 

20.(本小題滿分14分)

解:(1)當(dāng)時,,

當(dāng)時,

所以

;……………………       4分

(2)因為

所以

當(dāng)時,,

當(dāng)時,,

所以當(dāng),時,,即;…………   5分

(3)因為,,所以,

因為為等比數(shù)列,則

所以(舍去),所以.…………………………       5分

 

21.(本小題滿分14分)

解:(1)由題意知,的定義域為,

      …… 1分

當(dāng)時, ,函數(shù)在定義域上單調(diào)遞增.   …… 2分

(2)①由(Ⅰ)得,當(dāng)時,函數(shù)無極值點.              

時,有兩個相同的解,

時,

時,函數(shù)上無極值點.             …… 3分

③當(dāng)時,有兩個不同解,

                       

時,,

,

此時 在定義域上的變化情況如下表:

 

 

 

極小值

由此表可知:時,有惟一極小值點,          …… 5分

ii)   當(dāng)時,0<<1

此時,,的變化情況如下表:

極大值

極小值

由此表可知:時,有一個極大值和一個極小值點;                                                     …… 7分

綜上所述:

當(dāng)且僅當(dāng)有極值點;                                         …… 8分

當(dāng)時,有惟一最小值點;

當(dāng)時,有一個極大值點和一個極小值點

(3)由(2)可知當(dāng)時,函數(shù),

此時有惟一極小值點

             …… 9分

                      …… 11分

令函數(shù)

                                               …… 12分

…… 14分

 


同步練習(xí)冊答案