題目列表(包括答案和解析)
下列結(jié)論錯(cuò)誤的是 ( )
A.若“p且q”與 “﹁p或q”均為假命題,則p真q假.
B.命題“存在x∈R,x2﹣x>0”的否定是“對(duì)任意x∈R, x2﹣x≤0”
C.“x=1”是“x2﹣3x+2=0”的充分不必要條件.
D.“若am2 <bm2 ,則a<b”的逆命題為真.
已知下列四個(gè)命題:
①不存在實(shí)數(shù)a,使得<a-1或|a+1|<0;②存在實(shí)數(shù)x使得-5x-6>0且|x-1|≤1;③對(duì)所有的實(shí)數(shù)x,都有x+2>x+1且3x>2x;④對(duì)實(shí)數(shù)x,若,則≤0,其中真命題是
[ ]
一、ADBCC CCBBA DC
二、13. ,;14. ;15. .16.
三、
17.
解: (Ⅰ)由, 是三角形內(nèi)角,得……………..
∴ ………………………………………..
…………………………………………………………6分
(Ⅱ) 在中,由正弦定理, ,
…, ,
由余弦定理得:
=………………………………12分
18.
解:(I)已知,
只須后四位數(shù)字中出現(xiàn)2個(gè)0和2個(gè)1.
…………4分
(II)的取值可以是1,2,3,4,5,.
…………8分
的分布列是
1
2
3
4
5
P
…………10分
…………12分
(另解:記
.)
19.
證明: 解法一:(1)取PC中點(diǎn)M,連結(jié)ME、MF,則MF∥CD,MF=CD,又AE∥CD,AE=CD,∴AE∥MF,且AE=MF,∴四邊形AFME是平行四邊形,∴AF∥EM,∵AF平面PCE,∴AF∥平面PCE. …………………………………(4分)
(2)∵PA⊥平面ABCD,CD⊥AD. ∴CD⊥PD,∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°, ………………………………………………………………(6分)
∴△PAD是等腰直角三角形,∴AF⊥PD,又AF⊥CD,∴AF⊥平面PCD,而EM∥AF,∴EM⊥平面PCD. 又EM平面PEC,∴面PEC⊥面PCD. 在平面PCD內(nèi)過(guò)F作FH⊥PC于H,則FH就是點(diǎn)F到平面PCE的距離. …………………………………(10分)
由已知,PD=,PF=,PC=,△PFH∽△PCD,∴,
∴FH=. ………………………………………………………………(12分)
解法二:(1)取PC中點(diǎn)M,連結(jié)EM,
=+=,∴AF∥EM,又EM平面PEC,AF平面PEC,∴AF∥平面PEC. ………………………………………(4分)
(2)以A為坐標(biāo)原點(diǎn),分別以所在直線為x、y、z
軸建立坐標(biāo)系. ∵PA⊥平面ABCD,CD⊥AD,∴CD⊥PD,
∴∠PDA是二面角P-CD-B的平面角,即∠PDA=45°. ……(6分)
∴A(0, 0, 0), P(0, 0, 2), D(0, 2, 0), F(0, 1, 1), E, C(3, 2, 0),
設(shè)平面PCE的法向量為=(x, y, z),則⊥,⊥,而=(-,0,2),
=(,2,0),∴-x+2z=0,且x+2y=0,解得y=-x,z=x. 取x=4
得=(4, -3, 3),………………………………………………………………(10分)
又=(0,1,-1),
故點(diǎn)F到平面PCE的距離為d=.…………(12分)
20.
解:1)函數(shù).又,故為第一象限角,且.
函數(shù)圖像的一條對(duì)稱軸方程式是: 得又c為半點(diǎn)焦距,
由知橢圓C的方程可化為
(1)
又焦點(diǎn)F的坐標(biāo)為(),AB所在的直線方程為
(2) (2分)
(2)代入(1)展開(kāi)整理得
(3)
設(shè)A(),B(),弦AB的中點(diǎn)N(),則是方程(3)的兩個(gè)不等的實(shí)數(shù)根,由韋達(dá)定理得
(4)
即為所求。 (5分)
2)與是平面內(nèi)的兩個(gè)不共線的向量,由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù)使得等式成立。設(shè)由1)中各點(diǎn)的坐標(biāo)可得:
又點(diǎn)在橢圓上,代入(1)式得
化為: (5)
由(2)和(4)式得
又兩點(diǎn)在橢圓上,故1有入(5)式化簡(jiǎn)得:
由得到又是唯一確定的實(shí)數(shù),且,故存在角,使成立,則有
若,則存在角使等式成立;若由與于是用代換,同樣證得存在角使等式:成立.
綜合上述,對(duì)于任意一點(diǎn),總存在角使等式:成立.
(12分)
21.解:(Ⅰ)
所以函數(shù)在上是單調(diào)減函數(shù). …………………………4分
(Ⅱ) 證明:據(jù)題意且x1<x2<x3,
由(Ⅰ)知f (x1)>f (x2)>f (x3), x2=…………………………6分
…………………8分
即ㄓ是鈍角三角形……………………………………..9分
(Ⅲ) 假設(shè)ㄓ為等腰三角形,則只能是
即
① …………………………………………
而事實(shí)上, ②
由于,故(2)式等號(hào)不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..13分
22.
解:⑴∵,又,為遞增數(shù)列即為,
當(dāng)時(shí),恒成立,當(dāng)時(shí),的最大值為。∴ !郻的取值范圍是: (6分)
⑵ ①又 ②
①-②:
,
當(dāng)時(shí),有成立,
得與同號(hào),于是由遞推關(guān)系得與同號(hào),因此只要就可推導(dǎo)。又
,又 ,
即首項(xiàng)的取值范圍是
(13分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com