題目列表(包括答案和解析)
(本小題滿分14分)某中學(xué)將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個班級進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如下.記成績不低于90分者為“成績優(yōu)秀”.
(I)在乙班樣本的20個個體中,從不低于86分的成績中隨機(jī)抽取2個,求抽出的兩個均“成績優(yōu)秀”的概率;
(II)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有90%的把握認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān).
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
k | 1.323 | 2.072 | 2. 706 | 3. 841 | 5. 024 |
(本小題滿分14分)
Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用。下面是利用Monte-Carlo方法來計算定積分。考慮定積分,這時等于由曲線,軸,所圍成的區(qū)域M的面積,為求它的值,我們在M外作一個邊長為1正方形OABC。設(shè)想在正方形OABC內(nèi)隨機(jī)投擲個點(diǎn),若個點(diǎn)中有個點(diǎn)落入中,則的面積的估計值為,此即為定積分的估計值I。向正方形中隨機(jī)投擲10000個點(diǎn),有個點(diǎn)落入?yún)^(qū)域M
(1)若=2099,計算I的值,并以實(shí)際值比較誤差是否在5%以內(nèi)
(2)求的數(shù)學(xué)期望
(3)用以上方法求定積分,求I與實(shí)際值之差在區(qū)間(—0.01,0.01)的概率
附表:
n | 1899 | 1900 | 1901 | 2099 | 2100 | 2101 |
P(n) | 0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
(本小題滿分14分)
Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用。下面是利用Monte-Carlo方法來計算定積分。考慮定積分,這時等于由曲線,軸,所圍成的區(qū)域M的面積,為求它的值,我們在M外作一個邊長為1正方形OABC。設(shè)想在正方形OABC內(nèi)隨機(jī)投擲個點(diǎn),若個點(diǎn)中有個點(diǎn)落入中,則的面積的估計值為,此即為定積分的估計值I。向正方形中隨機(jī)投擲10000個點(diǎn),有個點(diǎn)落入?yún)^(qū)域M
(1)若=2099,計算I的值,并以實(shí)際值比較誤差是否在5%以內(nèi)
(2)求的數(shù)學(xué)期望
(3)用以上方法求定積分,求I與實(shí)際值之差在區(qū)間(—0.01,0.01)的概率
附表:
n | 1899 | 1900 | 1901 | 2099 | 2100 | 2101 |
P(n) | 0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com