③ 了解條件概率和兩個事件相互獨立的概念.理解次獨立重復試驗的模型及二項分布.并能解決一些簡單的實際問題. ④ 理解取有限個值的離散型隨機變量均值.方差的概念.能計算簡單離散型隨機變量的均值.方差.并能解決一些實際問題. ⑤ 利用實際問題的直方圖.了解正態(tài)分布曲線的特點及曲線所表示的意義. (2)統(tǒng)計案例 了解下列一些常見的統(tǒng)計方法.并能應用這些方法解決一些實際問題. ① 獨立性檢驗了解獨立性檢驗的基本思想.方法及其簡單應用. ② 假設檢驗了解假設檢驗的基本思想.方法及其簡單應用. ③ 回歸分析了解回歸的基本思想.方法及其簡單應用. 查看更多

 

題目列表(包括答案和解析)

甲、乙兩名射擊運動員參加射擊選拔訓練,在相同的條件下,兩人5次訓練的成績如下表(單位:環(huán))
次數(shù) 1 2 3 4 5
6.5 10.2 10.5 8.6 6.8
10.0 9.5 9.8 9.5 7.0
(1)請畫出莖葉圖,從穩(wěn)定性考慮,選派誰更好呢?說明理由(不用計算).若從甲、乙兩人5次成績中各隨機抽取一次,求抽取的成績至少有一個低于9.0環(huán)的概率;
(2)若從甲、乙兩人5次成績中各隨機抽取二次,設抽到10.0環(huán)以上(包括10.0環(huán))的次數(shù)為X,求隨機變量X的分布列和期望;
(3)經過對甲、乙兩人的很多次成績的統(tǒng)計,甲、乙的成績都均勻分布在[6.5,10.5]之間.現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于1.0環(huán)的概率.

查看答案和解析>>

(2013•沈陽二模)在一次數(shù)學測驗后,班級學委對選答題的選題情況進行統(tǒng)計,如下表:
平面幾何選講 極坐標與參數(shù)方程 不等式選講 合計
男同學(人數(shù)) 12 4 6 22
女同學(人數(shù)) 0 8 12 20
合計 12 12 18 42
(1)在統(tǒng)計結果中,如果把平面幾何選講和極坐標與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
幾何類 代數(shù)類 合計
男同學(人數(shù)) 16 6 22
女同學(人數(shù)) 8 12 20
合計 24 18 42
據(jù)此統(tǒng)計你是否認為選做“幾何類”或“代數(shù)類”與性別有關,若有關,你有多大的把握?
(2)在原統(tǒng)計結果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學中隨機選出7名同學進行座談.已知這名學委和兩名數(shù)學科代表都在選做“不等式選講”的同學中.
①求在這名學委被選中的條件下,兩名數(shù)學科代表也被選中的概率;
②記抽取到數(shù)學科代表的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

為了解某學校高中學生視力的情況,擬采取分層抽樣的方法從高一、高二、高三年級中抽取7個班進行調查,已知該校高一、高二、高三年級分別有8,8,12個班.
(1)從高一、高二、高三年級中應分別抽取多少個班?
(2)若從抽取的7(3)個班中隨機地抽取2(4)個班進行調查結果的對比.求這兩個班都來自高三年級的概率和這兩個班來自不同年級的概率.

查看答案和解析>>

在一次數(shù)學測驗后,班級學委對選答題的選題情況進行統(tǒng)計,如下表:
平面幾何選講 極坐標與參數(shù)方程 不等式選講 合計
男同學(人數(shù)) 12 4 6 22
女同學(人數(shù)) 0 8 12 20
合計 12 12 18 42
(1)在統(tǒng)計結果中,如果把平面幾何選講和極坐標與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
幾何類 代數(shù)類 合計
男同學(人數(shù)) 16 6 22
女同學(人數(shù)) 8 12 20
合計 24 18 42
據(jù)此統(tǒng)計你是否認為選做“幾何類”或“代數(shù)類”與性別有關,若有關,你有多大的把握?
(2)在原統(tǒng)計結果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學中隨機選出7名同學進行座談.已知這名學委和兩名數(shù)學科代表都在選做“不等式選講”的同學中.
①求在這名學委被選中的條件下,兩名數(shù)學科代表也被選中的概率;
②記抽取到數(shù)學科代表的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

為了解某學校高中學生視力的情況,擬采取分層抽樣的方法從高一、高二、高三年級中抽取7個班進行調查,已知該校高一、高二、高三年級分別有8,8,12個班.
(1)從高一、高二、高三年級中應分別抽取多少個班?
(2)若從抽取的7(3)個班中隨機地抽取2(4)個班進行調查結果的對比.求這兩個班都來自高三年級的概率和這兩個班來自不同年級的概率.

查看答案和解析>>


同步練習冊答案