(a+b)n展開式中第四項(xiàng)與第六項(xiàng)的系數(shù)相等.則n為----------- A.8 B.9 C.10 D.11 查看更多

 

題目列表(包括答案和解析)

我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對應(yīng)著(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,寫出(a+b)5的展開式.
(2)利用上面的規(guī)律計(jì)算:35-5×34+10×33-10×32+5×3-1.

查看答案和解析>>

已知(x2+px+8)(x2-3x+q)的展開式中不含x2項(xiàng)和x3項(xiàng),則p+q的值=
 

查看答案和解析>>

7、(mx+8)(2-3x)展開式中不含x項(xiàng),則m=
12

查看答案和解析>>

(2012•六盤水)如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4=
a4+4a3b+6a2b2+4ab3+b4
a4+4a3b+6a2b2+4ab3+b4

查看答案和解析>>

在(x+7)(x-m)的展開式中,x的一次項(xiàng)系數(shù)是3,則m的值是
4
4

查看答案和解析>>


同步練習(xí)冊答案