∴y=是R上的減函數(shù). --6分 查看更多

 

題目列表(包括答案和解析)

函數(shù)y1=-
2
x
(x<0)和y2=
2
2
x
(x>0)的圖象如圖所示,M是y軸正半軸上任意一點,過點M作PQ∥x軸分別交y1,y2的圖象于P,Q兩點,連接OP,OQ.有以下結(jié)論:
①△OPQ的面積為定值;②當x>0時,y2隨x的增大而減小;③MQ=2PM;④若∠POQ=90°,則OQ=
2
OP.
其中正確的結(jié)論有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

把函數(shù)圖象先往左側(cè)平移2個單位,再往上平移1各單位,則不同類型函數(shù)解析式的變化可舉例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;
y=→y=+1;…
(1)若把函數(shù)y=+1圖象再往 _________ 平移 _______ 個單位,所得函數(shù)圖象的解析式為y=+1;
(2)分析下列關(guān)于函數(shù)y=+1圖象性質(zhì)的描述:
①圖象關(guān)于(1,1)點中心對稱;②圖象必不經(jīng)過第二象限;③圖象與坐標軸共有2個交點;④當x>0時,y隨著x取值的變大而減。渲姓_的是: ___ .(填序號)

查看答案和解析>>

把函數(shù)圖象先往左側(cè)平移2個單位,再往上平移1各單位,則不同類型函數(shù)解析式的變化可舉例如下:

y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;

y=→y=+1;…

(1)若把函數(shù)y=+1圖象再往 _________ 平移 _______ 個單位,所得函數(shù)圖象的解析式為y=+1;

(2)分析下列關(guān)于函數(shù)y=+1圖象性質(zhì)的描述:

①圖象關(guān)于(1,1)點中心對稱;②圖象必不經(jīng)過第二象限;③圖象與坐標軸共有2個交點;④當x>0時,y隨著x取值的變大而減。渲姓_的是: ___ .(填序號)

 

查看答案和解析>>

把函數(shù)圖象先往左側(cè)平移2個單位,再往上平移1各單位,則不同類型函數(shù)解析式的變化可舉例如下:
y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;
y=→y=+1;…
(1)若把函數(shù)y=+1圖象再往 _________ 平移 _______ 個單位,所得函數(shù)圖象的解析式為y=+1;
(2)分析下列關(guān)于函數(shù)y=+1圖象性質(zhì)的描述:
①圖象關(guān)于(1,1)點中心對稱;②圖象必不經(jīng)過第二象限;③圖象與坐標軸共有2個交點;④當x>0時,y隨著x取值的變大而減。渲姓_的是: ___ .(填序號)

查看答案和解析>>

二次函數(shù)y=x2+2x-3的圖象是
拋物線
拋物線
,開口
,對稱軸是
x=-1
x=-1
,頂點坐標是
(-1,-4)
(-1,-4)
;與x軸的兩個交點坐標分別是
(1,0),(-3,0)
(1,0),(-3,0)
,與y軸的交點坐標是
(0,-3)
(0,-3)
,對稱軸左側(cè)(
x<-1
x<-1
)y隨x的增大而
減小
減小
;對稱軸右側(cè)(
x>-1
x>-1
)y隨x的增大而
增大
增大
,當x=
-1
-1
時,y有最
值為
-4
-4
;它是y=x2
平移
1
1
個單位向
平移
4
4
個單位得到的;當x
<-3或x>1
<-3或x>1
時,y>0,當x
-3<x<1
-3<x<1
時,y<0.

查看答案和解析>>


同步練習冊答案