(2)求 . 查看更多

 

題目列表(包括答案和解析)

求函數(shù)y=tan(
π
2
x+
π
3
)
的定義域、周期和單調(diào)區(qū)間.

查看答案和解析>>

1、求定義域時,應(yīng)注意以下幾種情況.
(1)如果f(x)是整式,那么函數(shù)的定義域是
R

(2)如果f(x)是分式,那么函數(shù)的定義域是使
分母不等于零
的實數(shù)的集合;
(3)如果f(x)為二次根式,那么函數(shù)的定義域是使
被開方數(shù)不小于零
的實數(shù)的集合;
(4)如果f(x)為某一數(shù)的零次冪,那么函數(shù)的定義域是使
底數(shù)不為零
的實數(shù)的集合.

查看答案和解析>>

13、求證:若一直線與一個平面平行,則過平面內(nèi)的一點且與這條直線平行的直線必在此平面內(nèi).

查看答案和解析>>

求直線a:2x+y-4=0關(guān)于直線l:3x+4y-1=0對稱的直線b的方程.

查看答案和解析>>

求函數(shù)y=
x2+9
+
x2-8x+41
的最小值.

查看答案和解析>>

1.C(系數(shù)最大項,即是二項式系數(shù)最大的項是中間項,2n為偶數(shù),所以中間項為第n+1項,故選C.)2.C(因集合有兩個不同的元素,所以方程ax2-2x+1=0有兩個不等的解,即 a≠0,Δ=(-2)24a>0, ∴a <1且a≠0.所以實數(shù)a的最大整數(shù)解是-1.故選 C.)

3.D(由題意可知≠1,解得x≠1,x≠2,故選D)

4.(理)C(∵ =

= =.故選 C.)

(文)B(因為 f′(x)<0(a <x <b),所以函數(shù)f(x)在區(qū)間(a, b) 是減函數(shù),又f(b)>0,所以函數(shù)f(x)在(a,b)內(nèi)必有f(x)>0.故選B)

5.(理)D(珍藏系列金銀、金玉新工藝紀(jì)念章和擺件中先去掉一款,分層抽樣時每層都是整數(shù),故選D.)

(文)B(∵=,∴12400×=124,故選B.)

6.(理)C(∵f(x) =2x2-lnx的定義域為{x| x>0},又f′(x)=,令f′(x)>0即>0,由定義域為{x| x>0},只須解得x>,因此選C.)

(文)C(因為f(x)=x3+x-2,所以f′(x)=3x2+1.直線y=4x-1的斜率為4,令f′(x)=3x2+1=4,得x=±1,f(1)=0,f(-1)=-4.f(1)=0,f(-1)=-4.所以曲線f(x)=x3+x-2在點(1,0)、(-1,-4)處的切線與直線y=4x-1平行.故選C.)

7.C(當(dāng)a≠0時,f(x)的圖像的對稱軸為直線x=1,f(x)=ax2-2ax+c,,∴ a<0,b=-2a>0,∵ 3a+c<0,a<0,∴ 4a+c<0,即c<2b.選C.)

8.(理)B( 拋擲-次,正好出現(xiàn)2枚正面向上,3枚反面向上的概率為=,Eξ=80×=25,故選B)

(文)D(因為=2,s2=;所以=3-2=4,

S2=9s2=3,故選D)

9.B(令f(x)=x4-4x3-2,則f′(x)=4x3-12x2=4x2(x-3),所以在區(qū)間x∈[-1,4],f(x)min=f(3)=-29.即-29>-a,∴a>29,故選 B)

10.C(由題意知p,q中有且僅有一個真命題.

若p真,∵2x-x2=-(x-1)2+1≤1,()x+4>4;∴ 1<m≤4,若q真,則7-2m>1,即m<3. ∴或,即3≤m≤4或m≤1.故選C)

11.B(令x=-2即f(2)=f(-2)+f(2),∴f(-2)=0,又f(x)是偶函數(shù),即 f(2)=0,∴f(x+4)=f(x), 故f(x)的周期為4.f(3)=f(-1)=f(1)=2,f(4)=f(0)=0.f(2008)=f(502×4)=f(0)=0.∴f(1)+f(2)+f(3)+… +f(2007)=f(1)+f(2)+f(3)+…+ f (2007)+ f (2008) = 502[f(1)+f(2)+f(3)+f(4)]=2008,故選B.)

12.(理)C(原式可看成點P ( 1, 3 )、Q (-,)兩點連線的斜率.令x=-,y=(0≤y≤1);所以x2+y2=1(-1≤x≤0 ) .即點Q位于單位圓在第二象限的圓弧上且端點的坐標(biāo)分別是B (-1,0)、C (0,1). ∴kPB=;kPC=2,設(shè)過點P與圓弧有公共點的直線方程為l:kx-y-k+3=0,則≤1,即k≤.結(jié)合圖形綜上可知:A∈[,2].故選C.)

(文)B(思路一:令x=,y=.則x2+y2=1(x≥0,y≥0).x=sinθ,y=cosθ(0≤θ≤). 所以A=x+y=sinθ+cosθ=sin(θ+)  ,又≤θ+≤.則A ∈[1,],故選B.

思路二:A2=1+2=1+2,當(dāng)m=時,A2最大值為2;當(dāng)m=1或4時,A2最小值為1.又∵A>0,則A∈[1,],故選B.)

13.(理)0(因為f(x1)=f(x2)=2008,所以x1+x2=-.則f(x1+x2)=0.故答案為0)

(文) (原式=2log32-5log32+2+3log32+=,故答案為 )

14.(理) (首先對這20個數(shù)按被3除的余數(shù)分類①1,4,7,10,13,16,19.②2,5,8,11,14,17,20.③3,6,9,12,15,18. 故所求的概率是= .故答案為 )

(文)(因為此問題可看成編號為1,2,3,…,n的n個人進(jìn)行摸獎且每人摸一張, 編號為k的人摸到一號獎券,又每人摸到每一個號的概率相同.故答案為.)

15.300(小于90km/h的概率為0.01+0.02+0.04=0.07,所以不小于90km/h的概率為0.03,共由1000輛汽車,所以這一時段內(nèi)通過該站的汽車中速度不小于90km/h的約有300輛,故答案為300.)

16.9(因為函數(shù)解析式為y=x2且值域為{1,4},所以x=±1,±2.故“同族函數(shù)”共有C ?C+2C ?C+C ?C =9,故答案為9.)

17.解:(1)當(dāng) x<0時,-x>0,f(-x)=-(x)2+2(-x)=-x2-2x  1分

       又f(x)為奇函數(shù),∴f(-x)=-f(x)=-x2-2x,

∴f(x)=x2+2x,∴m=2,y=f(x)的

圖象如右所示                       4分

 

(2)由(1)知

f(x)= ,由圖象可知,f(x)在[-1,1]上單調(diào)遞增,

要使地f(x)在[-1,|a|-2]上單調(diào)遞增,

只需                      8分

解之得-3≤a<-1或1<a≤310分

18.解:(1)因為 f(1)=-3+a(6-a)+b=-a26a+b-3,∵f(1)>0 ∴ a26a+3-b<0,Δ=24+4b                       2分

當(dāng)b ≤-6時,Δ≤0,∴f(1)>0的解集為Φ          4分

當(dāng)b>-6時,3-<a <3+.

∴f(1)>0的解集為{a|3-<a<3+}         6分

(2)∵ 不等式-3x2+a(6-a)x+b>0的解集為(-1,3)

∴f(x)>0與不等式(x+1)(x-3)<0同解            8分

∵3x2-a(6-a)x-b<0解集為(-1,3)             10分

∴,解之得           12分

19.解:(理)(1)設(shè)連對的個數(shù)為y,得分為ξ,則y=0,1,2,4

 因此ξ的所有可能的取值為0,2,4,8            2分

P(ξ=0)==;P(ξ=2)==;P(ξ=4)==;P(ξ=8)==.  9分

數(shù)學(xué)?第頁(見反面)所以ξ的分布列為

ξ

0

2

4

8

P

10分

(2)Eξ=0×+2×+4×+8×=2

答:該愛好者得分的數(shù)學(xué)期望為2               12分

(文)(1)抽出的產(chǎn)品中恰有1件正品的可能情況有CC=12種      2分

從這7件產(chǎn)品中一次性隨機(jī)抽出3件的所有可能有C=35種      4分

則抽出的產(chǎn)品中恰有1件正品數(shù)的概率為=         ……6分

(2)抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的可能情況有CC+CC+C=31種 9分

從這7件產(chǎn)品中一次性隨機(jī)抽出4件的所有可能有C=35種     11分

所以抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的概率為       12分

20.解:(理)(1)由f(x)=-(x≤-1)得f1(x)=-(x≤0),an=f1(an1)=-.                               2分

由a1=-1,得a2=-,a3=-,a4=-,猜想an=-.   4分

①當(dāng)n=1時,a1=-1=-,猜想成立;          5分

數(shù)學(xué)?第頁②設(shè)n=k時猜想成立,即ak=-,當(dāng)n=k+1時,

ak1=-=-

=-,即猜想對n=k+1時也成立.

由①、②知,an=-對一切n∈N*成立.        ………8分

(2)  =

=-1.            12分

(文)(1)由題意得:上年度的利潤為(13-10)×5000=15000萬元;本年度每輛車的投入成本為10×(1+x);本年度每輛車的出廠價為13×(1+0.7x);本年度年銷售量為5000×(1+0.4x),因此本年度的利潤為y=[13×(1+0.7x)-10×(1+x)]×5000×(1+0.4x)=(3-0.9x)×5000×(1+0.4x)=-1800x2+1500x+15000(0<x<1),由-1800x2+1500x+15000>15000,解得0<x<,所以當(dāng)0<x<時,本年度的年利潤比上年度有所增加.           5分

(2)本年度的利潤為f(x)=(3-0.9x)×3240×(-x2+2x+)=3240×(0.9x3-4.8x2+4.5x+5),則f′(x)=3240×(2.7x2-9.6x+4.5)=972(9x-5)(x-3)            8分

由f′(x)=0,解得x=或x=3,當(dāng)x∈(0,)時,f′(x)>0,f(x)是增函數(shù);當(dāng)x∈(,1)時,f′(x)<0,f(x)是減函數(shù).                         10分

∴當(dāng)x=時,f(x)取極大值f()=20000萬元,

因為f(x)在(0,1)上只有一個極大值,所以它是最大值,

所以當(dāng)x=時,本年度的年利潤最大,最大利潤為20000萬元!     12分

21.解:(理)(1)由題設(shè)可知,f′(x)=3x2-4ax-3a2且f′(-1)>0,f′(1)<0.

即3+4a3a2>0,∴<a<               2分

又3-4a3a2<0,∴>a或 a>            4分

 ∴<a<.故a=1                   6分

(2)由題設(shè)可知,f(x)=x3-2x2-3x,g(x)=x3+(1+b)x2-b,∴g(x)-f(x)=(b+3)x2+3x-b≥0在區(qū)間[-1,2]上恒成立                         7分

?)當(dāng)b+3=0,即b=-3時,g(x)-f(x)=3(x+1)≥0在區(qū)間[-1,2]上恒成立.   8分

?)當(dāng) b+3≠0,即g(x)-f(x)=(b + 3)x2+3x-b=(b+3)(x + 1)(x-)≥0,在區(qū)間[-1,2]上恒成立

①當(dāng)b+3>0,令 (b + 3)(x + 1)(x - )= 0,解得 x =-1; x =.由題設(shè)可知;x=≤-1,即-3<b≤-.                    10分

②當(dāng)b+3<0,令(b + 3)(x + 1)(x-)=0,解得x=-1;x=.由題設(shè)可知;x=≥2,即-6≤b<-3                        11分

綜上可知: 實數(shù)b的取值范圍是-6≤b≤-             ………12分

(文)f′(x)=-3x2+2ax+b,                       2分

因為函數(shù)f(x)在x=1處的切線斜率為-3,

所以f′(1)=-3+2a+b=-3,                     1分                

又f(1)=-1+a+b+c=-2得a+b+c=-1.               2分

(1)函數(shù)f(x)在x=-2時有極值,所以f′(-2)=-12-4a+b=0       3分

解得a=-2,b=4,c=-3                       5分

所以f(x)=-x3-2x2+4x-3.                     6分

(2)因為函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,所以導(dǎo)函數(shù)f′(x)=-3x2-bx+b在區(qū)間[-2,0]上的值恒大于或等于零,                        8分

則,得b≥4,               10分

所以實數(shù)b的取值范圍為[4+∞).                   12分

22.解:(1)①當(dāng)0≤x≤1時,由2(1-x)≤x 得x≥.∴≤x≤1.

②當(dāng)1<x≤2時,因x-1≤x 恒成立.∴1<x≤2.

由①②得f(x)≤x 的解集為{x|≤x≤2}.                3分

       (2)∵f(0)=2,f(1)=0,f(2)=1,

∴當(dāng)x=0時,f3(0)=f(f(f(0)))=f(f(2))=f(1)=0;

  當(dāng) x=1時,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;

  當(dāng)x=2時,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.

即對任意x∈A,恒有f3(x)=x. 6分 (8分)

   (3)f1()=2(1-)=,f2()=f(f())=f()=,f3()=f(f2())=f()=-1=,f4()=f(f3())=f()=2(1-)=,

   一般地,f4kr()=fr() (k,r∈ N*) ∴ f2007()=f3() =    9分  (12分)

   (4)(理)由(1)知,f()=,∴fn()=.則f12()=.∴∈B .

   由(2)知,對x=0,或1,或2,恒有f3(x)=x,∴f12(x)=f4×3(x)=x.則0,1,2∈B.

    由(3)知,對x=,,,,恒有f12(x)=f4×3(x)=x,∴,,,∈B.

  綜上所述,,0,1,2, ,,,∈B. ∴B中至少含有8個元素.  12分


同步練習(xí)冊答案