(1)求函數(shù)的“拐點 的坐標 查看更多

 

題目列表(包括答案和解析)

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大小.

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)定義:設f′′(x)是函數(shù)y=f(x)的導數(shù)y=f′(x)的導數(shù),若方程f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x))為函數(shù)y=f(x)的“拐點”.已知函數(shù)f(x)=x3-6x2+5x+4,請回答下列問題.(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結論;
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較的大小.

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較的大。

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較數(shù)學公式數(shù)學公式的大小.

查看答案和解析>>


同步練習冊答案