Eξ=0×+1×+2×+3×+4×=. 8分 查看更多

 

題目列表(包括答案和解析)

2013年4月20日8點(diǎn)02分四川省雅安市蘆山縣(北緯30.3度,東經(jīng)103.0度)
發(fā)生7.0級(jí)地震,此次地震中,受災(zāi)面積大,傷亡慘重,醫(yī)療隊(duì)到達(dá)后,都會(huì)選擇一個(gè)合理的位置,使傷員能在最短的時(shí)間內(nèi)得到救治.醫(yī)療隊(duì)首先到達(dá)O點(diǎn),設(shè)有四個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形ABCD的四個(gè)頂點(diǎn)A,B,C,D,為了救災(zāi)及災(zāi)后實(shí)際重建需要.需要修建三條小路OE、EF和OF,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,AB=50千米,BC=25
3
千米且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的周長(zhǎng)表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每千米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

(本小題滿分13分)
定義F(x,y)=(1+x)y,其中xy∈(0,+∞).
(1)令函數(shù)f(x)=F(1,log2(x3ax2bx+1)),其圖象為曲線C,若存在實(shí)數(shù)b使得曲線Cx0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(2)令函數(shù)g(x)=F(1,log2[(lnx-1)exx]),是否存在實(shí)數(shù)x0∈[1,e],使曲線yg(x)在點(diǎn)xx0處的切線與y軸垂直?若存在,求出x0的值;若不存在,請(qǐng)說明理由.
(3)當(dāng)xy∈N?,且x<y時(shí),求證:F(xy)>F(y,x).

查看答案和解析>>

已知下列命題:
(1)|
a
|2=
a
2
;
(2)
a
b
a
2
=
b
a
;
(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2
;
(5)
a
b
?存在唯一的實(shí)數(shù)λ∈R,使得
b
a
;
(6)
e
為單位向量,且
a
e
,則
a
=±|
a
|•
e

(7)|
a
a
a
|=|
a
|3
;
(8)
a
b
共線,
b
c
共線,則
a
c
共線;
(9)若
a
b
=
b
c
b
0
,則
a
=
c
;
(10)若
OA
=
a
,
OB
=
b
,
a
b
不共線,則∠AOB平分線上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
確定./
其中正確命題的序號(hào)
 

查看答案和解析>>

已知下列命題:
(1)|
a
|2=
a
2

(2)
a
b
a
2
=
b
a
;
(3)(
a
b
)2=
a
2
b
2

(4)(
a
-
b
)2=
a
2
-2
a
b
+
b
2
;
(5)
a
b
?存在唯一的實(shí)數(shù)λ∈R,使得
b
a
;
(6)
e
為單位向量,且
a
e
,則
a
=±|
a
|•
e
;
(7)|
a
a
a
|=|
a
|3
;
(8)
a
b
共線,
b
c
共線,則
a
c
共線;
(9)若
a
b
=
b
c
b
0
,則
a
=
c
;
(10)若
OA
=
a
,
OB
=
b
a
b
不共線,則∠AOB平分線上的向量
OM
λ(
a
|
a
|
+
b
|
b
|
)
,λ由
OM
確定./
其中正確命題的序號(hào) ______.

查看答案和解析>>

已知隨機(jī)變量X的分布列為

X
 
1
 
2
 
3
 
P
 
0.2
 
0.4
 
0.4
 
 
則E(6X+8)=(  )
A.13.2      B.21.2         C.20.2      D.22.2

查看答案和解析>>


同步練習(xí)冊(cè)答案