設(shè)切點坐標(biāo)為(x0,),則過該切點的直線的斜率為ln2,直線的方程為y-=ln2(x-x0). 查看更多

 

題目列表(包括答案和解析)

(2012•韶關(guān)一模)設(shè)拋物線C的方程為x2=4y,M(x0,y0)為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時,求過M,A,B三點的圓的方程,并判斷直線l與此圓的位置關(guān)系;
(2)求證:直線AB恒過定點(0,m).

查看答案和解析>>

(2013•杭州一模)已知函數(shù)f(x)=x2-(a+2)x+alnx.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極小值;
(Ⅱ)當(dāng)a=-1時,過坐標(biāo)原點O作曲線y=f(x)的切線,設(shè)切點為P(m,n),求實數(shù)m的值;
(Ⅲ)設(shè)定義在D上的函數(shù)y=g(x)在點P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時,若
g(x)-h(x)x-x0
>0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉(zhuǎn)點”.當(dāng)a=8時,試問函數(shù)y=f(x)是否存在“轉(zhuǎn)點”.若存在,請求出“轉(zhuǎn)點”的橫坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

(2012•湖北模擬)已知a為常數(shù),a∈R,函數(shù)f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然對數(shù)的底數(shù))
(Ⅰ)過坐標(biāo)原點O作曲線y=f(x)的切線,設(shè)切點為P(x0,y0),求證:x0=1;
(Ⅱ)令F(x)=
f(x)g(x)
,若函數(shù)F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

已知a為常數(shù),a∈R,函數(shù)f(x)=x2+ax-lnx,g(x)=ex.(其中e是自然對數(shù)的底數(shù))
(Ⅰ)過坐標(biāo)原點O作曲線y=f(x)的切線,設(shè)切點為P(x0,y0),求證:x0=1;
(Ⅱ)令數(shù)學(xué)公式,若函數(shù)F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

設(shè)拋物線C的方程為x2=4y,M(x0,y0)為直線l:y=-m(m>0)上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時,求過M,A,B三點的圓的方程,并判斷直線l與此圓的位置關(guān)系;
(2)求證:直線AB恒過定點(0,m).

查看答案和解析>>


同步練習(xí)冊答案