所以點的坐標(biāo)為(--------------6分 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)

一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程。

(1) 若點為拋物線準(zhǔn)線上

一點,點均在該拋物線上,并且直線經(jīng)

過該拋物線的焦點,證明.

(2)若點要么落在所表示的曲線上,

要么落在所表示的曲線上,并且,

試寫出(不需證明);

(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)
一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程。
(1) 若點為拋物線準(zhǔn)線上
一點,點均在該拋物線上,并且直線經(jīng)
過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,
要么落在所表示的曲線上,并且,
試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.

查看答案和解析>>

精英家教網(wǎng)在矩形ABCD中,已知AD=6,AB=2,E、F為AD的兩個三等分點,AC和BF交于點G,△BEG的外接圓為⊙H.以DA所在直線為x軸,以DA中點O為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系.
(1)求以F、E為焦點,DC和AB所在直線為準(zhǔn)線的橢圓的方程.
(2)求⊙H的方程.
(3)設(shè)點P(0,b),過點P作直線與⊙H交于M,N兩點,若點M恰好是線段PN的中點,求實數(shù)b的取值范圍.

查看答案和解析>>

出租車幾何學(xué)是由十九世紀(jì)的赫爾曼-閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如(x,y)的有序?qū)崝?shù)對,直線還是滿足ax+by+c=0的所有(x,y)組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:|AB|=|x1-x2|+|y1-y2|,請解決以下問題:
(1)求線段x+y=2(x≥0,y≥0)上一點M(x,y)的距離到原點O(0,0)的“距離”;
(2)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓周”上的所有點到點Q(a,b)的“距離”均為 r的“圓”方程;
(3)點A(1,3)、B(6,9),寫出線段AB的垂直平分線的軌跡方程并畫出大致圖象.(說明所給圖形小正方形的單位是1)

查看答案和解析>>

在矩形ABCD中,已知AD=6,AB=2,E、F為AD的兩個三等分點,AC和BF交于點G,△BEG的外接圓為⊙H.以DA所在直線為x軸,以DA中點O為坐標(biāo)原點,建立如圖所示的平面直角坐標(biāo)系.
(1)求以F、E為焦點,DC和AB所在直線為準(zhǔn)線的橢圓的方程.
(2)求⊙H的方程.
(3)設(shè)點P(0,b),過點P作直線與⊙H交于M,N兩點,若點M恰好是線段PN的中點,求實數(shù)b的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案