題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)在軸上,點(diǎn)在軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在軸上移動時,求動點(diǎn)的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線、,當(dāng),求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實(shí)根,求實(shí)數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
答案
B
B
B
C
A
D
B
C
C
B
二、填空題:
題號
11
12
13
14
15
答案
1000
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由=,得:=,
即:,
又∵0<< ∴=.
(2)直線方程為:.
,
點(diǎn)到直線的距離為:.
∵
∴ ∴
又∵0<<,
∴sin>0,cos<0
∴
∴sin-cos=
17.(本小題滿分12分)
解:(1)某同學(xué)被抽到的概率為
設(shè)有名男同學(xué),則,男、女同學(xué)的人數(shù)分別為
(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有共種,其中有一名女同學(xué)的有種
選出的兩名同學(xué)中恰有一名女同學(xué)的概率為
(3),
,
第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定
18.(本小題滿分14分)
解:(1)分別是棱中點(diǎn)
|