求證:三角形三條中線交于一點(diǎn).且交點(diǎn)與各頂點(diǎn)的距離等于所在中線長(zhǎng)的. 查看更多

 

題目列表(包括答案和解析)

在三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=1,D1是線段A1B1上一動(dòng)點(diǎn)(可以與A1或B1重合).過D1和CC1的平面與AB交于D.
(1)若四邊形CDD1C1總是矩形,求證:三棱柱ABC-A1B1C1為直三棱柱;
(2)在(1)的條件下,求二面角B-AD1-C的取值范圍.

查看答案和解析>>

在三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=1,D1是線段A1B1上一動(dòng)點(diǎn)(可以與A1或B1重合).過D1和CC1的平面與AB交于D.
(1)若四邊形CDD1C1總是矩形,求證:三棱柱ABC-A1B1C1為直三棱柱;
(2)在(1)的條件下,求二面角B-AD1-C的取值范圍.

查看答案和解析>>

已知橢圓W的中心在原點(diǎn),焦點(diǎn)在X軸上,離心率為
6
3
,橢圓短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的面積為2
2
,橢圓W的左焦點(diǎn)為F,過x軸的一點(diǎn)M(-3,0)任作一條斜率不為零的直線L與橢圓W交于不同的兩點(diǎn)A、B,點(diǎn)A關(guān)于X軸的對(duì)稱點(diǎn)為C.
(1)求橢圓W的方程;
(2)求證:
CF
FB
(λ∈R);
(3)求△MBC面積S的最大值.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(-4,0),點(diǎn)P在射線AB上運(yùn)動(dòng),連結(jié)CP與y軸交于點(diǎn)D,連結(jié)BD.過P,D,B三點(diǎn)作⊙Q與y軸的另一個(gè)交點(diǎn)為E,延長(zhǎng)DQ交⊙Q于點(diǎn)F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點(diǎn)P在線段AB(不包括A,B兩點(diǎn))上時(shí).
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請(qǐng)求出y關(guān)于x的函數(shù)解析式;
(3)請(qǐng)你探究:點(diǎn)P在運(yùn)動(dòng)過程中,是否存在以B,D,F(xiàn)為頂點(diǎn)的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時(shí)點(diǎn)P的坐標(biāo):如果不存在,請(qǐng)說明理由.

查看答案和解析>>

如圖,在中,邊上的中線,上任意一點(diǎn),于點(diǎn).求證:

【解析】本試題主要是考查了平面幾何中相似三角形性質(zhì)的運(yùn)用。根據(jù)已知條件,首先做輔助線,然后利用平行性得到相似比,,,然后得到比例相等。充分利用比值問題轉(zhuǎn)化得到結(jié)論。

證明:過,交,∴,

, ,   ∵的中點(diǎn),,

,,,即

 

查看答案和解析>>


同步練習(xí)冊(cè)答案