21.解:(1)∵在(.1)上單調(diào)遞減.在上單調(diào)遞增. 查看更多

 

題目列表(包括答案和解析)

(1)利用定義證明:函數(shù)f(x)=x3-3x在[0,1]上單調(diào)遞減,在[1,+∞)上單調(diào)遞增;
(2)設(shè)x0是方程x3-3x=100的正實(shí)數(shù)解,利用(1)的結(jié)論,求證:4<x0<5.

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x(x≠3,保留4位有效數(shù)字),使得f(x)<0成立;
(2)在曲線上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求出其坐標(biāo);若曲線(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并取加以研究.當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+數(shù)學(xué)公式(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的取值范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間數(shù)學(xué)公式上單調(diào)遞減,在區(qū)間數(shù)學(xué)公式上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

(1)利用定義證明:函數(shù)f(x)=x3-3x在[0,1]上單調(diào)遞減,在[1,+∞)上單調(diào)遞增;
(2)設(shè)x0是方程x3-3x=100的正實(shí)數(shù)解,利用(1)的結(jié)論,求證:4<x0<5.

查看答案和解析>>

已知:定義在(-1,1)上的函數(shù)滿足:對(duì)任意都有.

(1)求證:函數(shù)是奇函數(shù);

(2)如果當(dāng)求證:在(-1,1)上是單調(diào)遞減函數(shù);

(3)在(2)的條件下解不等式:

查看答案和解析>>


同步練習(xí)冊(cè)答案