(4)圓與圓的公切線共有(A)1條 (B)2條 (C)3條 (D)4條 查看更多

 

題目列表(包括答案和解析)

已知⊙O:x2+y2=1和定點A(2,1),由⊙O外一點P(a,b)向⊙O引切線PQ,切點為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點,試求半徑取最小值時的⊙P方程.

查看答案和解析>>

已知⊙O:x2+y2=1和定點A(2,1),由⊙O外一點P(a,b)向⊙O引切線PQ,切點為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點,試求半徑取最小值時的⊙P方程.

查看答案和解析>>

已知⊙O:x2+y2=1和定點A(2,1),由⊙O外一點P(a,b)向⊙O引切線PQ,切點為Q,且滿足PQ=PA.
(1)證明:P(a,b)在一條定直線上,并求出直線方程;
(2)求線段PQ長的最小值;
(3)若以P為圓心所作的⊙P與⊙O有公共點,試求半徑取最小值時的⊙P方程.

查看答案和解析>>

已知拋物線y2=8x與橢圓有公共焦點F,且橢圓過點D(-).
(1)求橢圓方程;
(2)點A、B是橢圓的上下頂點,點C為右頂點,記過點A、B、C的圓為⊙M,過點D作⊙M的切線l,求直線l的方程;
(3)過點A作互相垂直的兩條直線分別交橢圓于點P、Q,則直線PQ是否經(jīng)過定點,若是,求出該點坐標,若不經(jīng)過,說明理由.

查看答案和解析>>

設圓F以拋物線P:y2=4x的焦點F為圓心,且與拋物線P有且只有一個公共點.
(I)求圓F的方程;
(Ⅱ)過點M (-1,0)作圓F的兩條切線與拋物線P分別交于點A,B和C,D,求經(jīng)過A,B,C,D四點的圓E的方程.

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

(Ⅰ)由,得,  ∴

,即,得……………4分

(Ⅱ)當時,,

,即,…………………………7分

知,,

是首項為,公比為的等比數(shù)列,

  ……………………………………………………10分

(18)解:

,知,又,由正弦定理,有

,∴,,……3分

  ……………6分

        

         …………9分

,  ∴,

故所求函數(shù)為,函數(shù)的值域為……………12分

(19)解:

      記顧客購買一件產(chǎn)品,獲一等獎為事件,獲二等獎為事件,不獲獎為事件,則,

(Ⅰ)該顧客購買2件產(chǎn)品,中獎的概率

  ……………4分

  (Ⅱ)該顧客獲得獎金數(shù)不小于100元的可能值為100元,120元,200元,依次記這三個事件為、,則

        ,………6分

        ,………8分

      ,………10分

    所以該顧客獲得獎金數(shù)不小于100元的概率

……12分

(20)解法一:

      (Ⅰ)取中點,連結(jié),則

       又, ∴,四邊形是平行四邊形,

       ∴,又,,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴,

       又平面平面,∴

      而,  ∴

     作,則,且,的中點。

,連結(jié),則

 于是為二面角的平面角。…………………………8分

,,∴,

在正方形中,作,則

,

,∴。

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點,建立空間直角坐標系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,

,

, ∴

,∴   ………………………………………4分

(Ⅱ)設為面的法向量,則,且。

,,

,取,,則 ……………8分

為面的法向量,所以

因為二面角為銳角,所以其大小為…………………………12分

(21)解:

     (Ⅰ) 

      令,,則………………2分

,即,則恒有,函數(shù)沒有極值點!4分

,即,或,則有兩個不相等的實根、,且的變化如下:

由此,是函數(shù)的極大值點,是函數(shù)的極小值點。

綜上所述,的取值范圍是…………………………7分

(Ⅱ)由(Ⅰ)知,,

…………………………10分

,得(舍去),,

所以,…………………………12分

(22)解:

(Ⅰ)記

                          ①

                            ②

,得

,                 ③

由①、③,得,即……3分

由于,,則上面方程可化為

,即,所以,

代入①式,整理,并注意,得

由于,所以

因此,直線與雙曲線有一個公共點…………………………6分

(注:直線和雙曲線聯(lián)立后,利用判斷交點個數(shù)也可)

(Ⅱ)雙曲線的漸近線方程為,不妨設點在直線上, 點在直線上。

,得點坐標為,

,得點坐標為,…………………………9分

因為,

所以為線段的中點!12分

(注:若只計算、的橫坐標或縱坐標判斷為線段的中點不扣分)

 

 

 


同步練習冊答案