(Ⅱ)求證:..為自然對(duì)數(shù)的底. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)設(shè),其中,且為自然對(duì)數(shù)的底)
(1)求的關(guān)系;
(2)在其定義域內(nèi)的單調(diào)函數(shù),求的取值范圍;
(3)求證:(i) 
(ii) ()。

查看答案和解析>>

(本小題滿分12分)設(shè),其中,且為自然對(duì)數(shù)的底)
(1)求的關(guān)系;
(2)在其定義域內(nèi)的單調(diào)函數(shù),求的取值范圍;
(3)求證:(i) 
(ii) ()。

查看答案和解析>>

(本小題滿分12分)已知數(shù)列的前項(xiàng)和為,且,

;(1)求數(shù)列的通項(xiàng)公式

(2)設(shè)數(shù)列滿足:,且,求證:(3)若(2)問中數(shù)列 滿足 ,

求證: (其中為自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

(本小題滿分14分)設(shè)e為自然對(duì)數(shù)的底)。

   (1)求pq的關(guān)系;

    (2)若在其定義域?yàn)閱握{(diào)函數(shù),求p的取值范圍。

    (3)證明:。

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)。

(1)求函數(shù)的單調(diào)區(qū)間與最值;

(2)若方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍;  (其中e為自然對(duì)數(shù)的底數(shù))

(3)如果函數(shù)的圖像與x軸交于兩點(diǎn),且,求證:(其中,的導(dǎo)函數(shù),正常數(shù)滿足

 

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

,知,又,由正弦定理,有

,∴,……3分

  ……………5分

        

         …………8分

,,  ∴,

故所求函數(shù)為,函數(shù)的值域?yàn)?sub>……………10分

(18)解:

      記顧客購(gòu)買一件產(chǎn)品,獲一等獎(jiǎng)為事件,獲二等獎(jiǎng)為事件,不獲獎(jiǎng)為事件,則,

(Ⅰ)該顧客購(gòu)買2件產(chǎn)品,中獎(jiǎng)的概率

  ……………4分

  (Ⅱ)的可能值為0,20,40,100,120,200,其中

        ,,

         ,,

        ……………8分

的分布列為

                                                                ……………10分

的期望

(元)…………………………………………………………………12分

(19)解法一:

      (Ⅰ)取中點(diǎn),連結(jié)、,則,

       又, ∴,四邊形是平行四邊形,

       ∴,又,,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴,

       又平面平面,∴

      而,  ∴

     作,則,且,的中點(diǎn)。

,連結(jié),則,

 于是為二面角的平面角!8分

,,∴

在正方形中,作,則

,∴。

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,,

,,

, ∴,

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且

,,

,取,,則 ……………8分

為面的法向量,所以,

因?yàn)槎娼?sub>為銳角,所以其大小為…………………………12分

(20)解:

     (Ⅰ)  ……………………………………………………1分

      (1)當(dāng)時(shí),由,知,單調(diào)遞增
         而,則不恒成立…………………………3分

       (2)當(dāng)時(shí),令,得

           當(dāng)時(shí),,單調(diào)遞增;時(shí), 單調(diào)遞減,處取得極大值。

   由于,所以,解得,即當(dāng)且僅當(dāng)時(shí)恒成立。

綜上,所求的值為   …………………………7分

(Ⅱ)等價(jià)于,

下證這個(gè)不等式成立。

由(Ⅰ)知,即……………9分

…………………………12分

(21)解:

(Ⅰ)曲線方程可寫為,

設(shè),則,又設(shè)、、

曲線在點(diǎn)處的切線斜率,則切線方程為

,亦即…………………………3分

分別將坐標(biāo)代入切線方程得,

,得

,  ①

,  ②

……………7分

,∴,

則由②式得。

從而曲線的方程為…………………………8分

(Ⅱ)軸與曲線交點(diǎn)分別為、,此時(shí)……9分

當(dāng)、不在軸上時(shí),設(shè)直線方程為。

,則、在第一象限,

,得,由,

………………………………………11分

因?yàn)榍都關(guān)于軸對(duì)稱,所以當(dāng)時(shí),仍有

綜上,題設(shè)的為定值…………………………12分

(22)解:

      (Ⅰ)由,且,得

當(dāng)時(shí), ,解得

當(dāng)時(shí),,解得

猜想:……………………………………………………2分

用數(shù)學(xué)歸納法證明如下

(1)       當(dāng)時(shí),命題顯然成立!3分

(2)       假設(shè)當(dāng)時(shí)命題成立,即,那么

         由,得

       

              于是,當(dāng)時(shí)命題仍然成立………………………………………6分

根據(jù)(1)和(2),對(duì)任何,都有…………………………7分

(Ⅱ)當(dāng)時(shí),,且對(duì)于也成立。

因此,

對(duì)于,由,得

,……………10分

,

綜上,………………………………………12分

 

 

 


同步練習(xí)冊(cè)答案