如果存在.求線段的長.如果不存在.請說明理由. 查看更多

 

題目列表(包括答案和解析)

如圖所示,三棱錐ABCD中,ABBC,ABBDBCCD,且ABBC=1.

(1)求證:平面CBD⊥平面ABD

(2)是否存在這樣的三棱錐,使二面角CAD-B的平面角為30°,如果存在,求出線段CD的長.如果不存在,請找出一個角q ,使得存在這樣的三棱錐,也使二面角CADB的平面角為q

查看答案和解析>>

如圖所示,三棱錐ABCD中,ABBC,ABBD,BCCD,且ABBC=1.

(1)求證:平面CBD⊥平面ABD;

(2)是否存在這樣的三棱錐,使二面角CAD-B的平面角為30°,如果存在,求出線段CD的長.如果不存在,請找出一個角q ,使得存在這樣的三棱錐,也使二面角CADB的平面角為q

查看答案和解析>>

如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,的中點(diǎn).

(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。

查看答案和解析>>

如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,的中點(diǎn).

(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。

查看答案和解析>>

如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面,的中點(diǎn).

(1)求證://平面;

(2)與平面BDE所成角的余弦值;

(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。

 

查看答案和解析>>

 

說明:1.參考答案與評分標(biāo)準(zhǔn)指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點(diǎn)和能力比照評分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).

      2.對解答題中的計算題,當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯誤,就不再給分.

      3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題考查基本知識和基本運(yùn)算.共8小題,每小題5分,滿分40分.

題號

1

2

3

4

5

6

7

8

答案

A

C

B

C

B

A

D

D

 

二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做二題,三題全答的,只計算前二題得分.第12題第1個空3分,第2個空2分.

9.2          10.79         11.0 或 2       12.16,

13.1         14.3          15.6

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題主要考查三角函數(shù)性質(zhì)和三角函數(shù)的基本關(guān)系等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及運(yùn)算求解能力)

解:(1)

                 .                

,

∴函數(shù)的值域為.                                     

(2)∵,,∴,

都為銳角,∴,

                    

                  

           

的值為.                                      

 

17.(本小題主要考查空間線面關(guān)系、幾何體的表面積與體積等基本知識,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力)

解:(1)設(shè),∵幾何體的體積為,

,                      

,

,解得

的長為4.                                           

(2)在線段上存在點(diǎn),使直線垂直.     

以下給出兩種證明方法:

方法1:過點(diǎn)的垂線交于點(diǎn),過點(diǎn) 

于點(diǎn)

,,

平面

平面,∴

,∴平面

平面,∴.      

在矩形中,∵

,即,∴

,∴,即,∴

中,∵,∴

由余弦定理,得

∴在線段上存在點(diǎn),使直線垂直,且線段的長為

方法2:以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在的直線為軸,軸,軸建立如圖的空間直角坐標(biāo)系,由已知條件與(1)可知,,,  

假設(shè)在線段上存在點(diǎn)≤2,,0≤

使直線垂直,過點(diǎn)于點(diǎn)

 

,得,

,

,∴,

,∴.       

此時點(diǎn)的坐標(biāo)為,在線段上.

,∴

∴在線段上存在點(diǎn),使直線垂直,且線段的長為

18.(本小題主要考查等差數(shù)列、等比數(shù)列的通項公式與前項和公式等基礎(chǔ)知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力)

解:設(shè)等比數(shù)列的首項為,公比為,

,成等差數(shù)列,

,,∴

解得.             

當(dāng)時,∵,,,         

∴當(dāng)時,,,不成等差數(shù)列.

當(dāng)時,,成等差數(shù)列.下面給出兩種證明方法.

證法1:∵

                            

                            ,

∴當(dāng)時,,成等差數(shù)列.

證法2:∵,          

              , 

∴當(dāng)時,,成等差數(shù)列. 

19.(本小題主要考查等可能事件、互斥事件和獨(dú)立重復(fù)試驗等基礎(chǔ)知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力)

解:(1)∵一次摸球從個球中任選兩個,有種選法,                         

任何一個球被選出都是等可能的,其中兩球顏色相同有種選法,

∴一次摸球中獎的概率.             

(2)若,則一次摸球中獎的概率,                  

三次摸球是獨(dú)立重復(fù)試驗,三次摸球恰有一次中獎的概率是

.                                    

(3)設(shè)一次摸球中獎的概率為,則三次摸球恰有一次中獎的概率為,,

上為增函數(shù),在上為減函數(shù).              

∴當(dāng)時,取得最大值.

,

解得

故當(dāng)時,三次摸球恰有一次中獎的概率最大.                 

 

20.(本小題主要考查函數(shù)的性質(zhì)、函數(shù)與導(dǎo)數(shù)等知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力和運(yùn)算求解能力)

(1)解法1:∵,其定義域為,  

.                

是函數(shù)的極值點(diǎn),∴,即.                                         

,∴.                                               

經(jīng)檢驗當(dāng)時,是函數(shù)的極值點(diǎn),

.                                             

解法2:∵,其定義域為

.               

,即,整理,得

的兩個實根(舍去),,

當(dāng)變化時,的變化情況如下表:

0

極小值

依題意,,即,

,∴.                           

(2)解:對任意的都有成立等價于對任意的都有.                       

當(dāng)[1,]時,

同步練習(xí)冊答案