(Ⅱ)設(shè)O點在平面D1AP上的射影是H.求證:D1H⊥AP,(Ⅲ)求點P到平面ABD1的距離. (19)制定投資計劃時.不僅要考慮可能獲得的盈利.而且要考慮可能出現(xiàn)的虧損. 查看更多

 

題目列表(包括答案和解析)

在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心.點P在棱CC1上,且CC1=4CP.
(1)設(shè)O點在平面D1AP上的射影是H,求證:D1H⊥AP;
(2)求V錐P-ABD1

查看答案和解析>>

在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心.點P在棱CC1上,且CC1=4CP.
(1)設(shè)O點在平面D1AP上的射影是H,求證:D1H⊥AP;
(2)求數(shù)學(xué)公式

查看答案和解析>>

在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(1)求直線AP與平面BCC1B1所成的角的大小;

(2)設(shè)O點在平面D1AP上的射影是H,求證D1H⊥AP;

(3)求點P到平面ABD1的距離.

查看答案和解析>>

如圖在棱長為4的正方體ABCD—A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(1)求直線AP與平面BCC1B1所成的角的大。

(2)設(shè)O點在平面D1AP上的射影是H,求證D1H⊥AP;

(3)求點P到平面ABD1的距離.

查看答案和解析>>

在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.

(Ⅰ)求直線AP與平面BCC1B1所成的角的大小(結(jié)果用反三角函數(shù)值表示);

(Ⅱ)設(shè)O點在平面D1AP上的射影是H,求證:D1HAP

(Ⅲ)求點P到平面ABD1的距離.

 

 

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識,以及推理能力和運算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識,考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結(jié)BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規(guī)劃的基本知識,以及運用數(shù)學(xué)知識解決實際問題的能力.滿分12分.

      解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個項目.

      由題意知

      目標函數(shù)z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

      與可行域相交,其中有一條直線經(jīng)過可行域上的M點,且

      與直線的距離最大,這里M點是直線

      和的交點.

       解方程組 得x=4,y=6

      此時(萬元).

          x=4,y=6時z取得最大值.

      答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

(20)本小題主要考查數(shù)列的基本知識,以及運用數(shù)學(xué)知識分析和解決問題的能力.滿分12分.

      解:(I)當時,

             

       由,

       即              又.

       (II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,得

<span id="ua5nr"><dfn id="ua5nr"></dfn></span>
<noscript id="ua5nr"><progress id="ua5nr"></progress></noscript>

    (1)

    (2)

           由(1)得

           當

           若成立

           若

              故所得數(shù)列不符合題意.

           當

           若

           若.

           綜上,共有3個滿足條件的無窮等差數(shù)列:

           ①{an} : an=0,即0,0,0,…;

           ②{an} : an=1,即1,1,1,…;

           ③{an} : an=2n-1,即1,3,5,…,

    (21)本小題主要考查直線、橢圓和向量等基本知識,以及推理能力和運算能力.滿分12分.

           解:(I)設(shè)所求橢圓方程是

           由已知,得    所以.

           故所求的橢圓方程是

           (II)設(shè)Q(),直線

           當由定比分點坐標公式,得

          

           .

           于是   故直線l的斜率是0,.

    (22)本小題主要考查函數(shù)、不等式等基本知識,以及綜合運用數(shù)學(xué)知識解決問題的能力.滿分14分.

           證明:(I)任取 

           和  ②

           可知 ,

           從而 .  假設(shè)有①式知

          

           ∴不存在

           (II)由                        ③

           可知   ④

           由①式,得   ⑤

           由和②式知,   ⑥

           由⑤、⑥代入④式,得

                              

    (III)由③式可知

      (用②式)

           (用①式)


    同步練習(xí)冊答案