21.過橢圓C:上一動點P引圓O:的兩條切線PA.PB. 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

 

一、選擇題

1、C       2、C        3、D       4、B       5、D       6、A  

7、D       8、B        9、C      10、A      11、B      12、B

二、填空題

13、±4         14、0.18       15、251,4      16、①②

三、解答題

17、解:(Ⅰ)由,得

也即

   ∴

(Ⅱ)∵  

的最大值為

18、解:(Ⅰ)∵擊中目標次的概率為

∴他至少擊中兩次的概率

(Ⅱ)設轉(zhuǎn)移前射擊次數(shù)為的可能取值為1,2,3,4,5

,1,2,3,4   

的分布列為

1

2

3

4

5

19、解:(Ⅰ)∵,∴

    • <dd id="8ioek"></dd>
      <table id="8ioek"></table>

      于M,連OM

      是二面角B-DE-A的平面角,

      中,,,由等面積法得

         ∴

      (Ⅱ)     ∴

      為直線BC與平面EDB所成的角,則

      20.解:(Ⅰ)由已知得

      依題意:恒成立

      即:恒成立

      也即:恒成立

          即

      (Ⅱ)∵

      在定義域

      滿足上是減函數(shù),在是增函數(shù)

        當時,,∴上是增函數(shù)

        當時,,∴上是減函數(shù)

        當時,,∴上是減函數(shù)

      上是增函數(shù)

      21、解:(Ⅰ)設切點A、B的坐標為

      則過A、B的圓的切線方程分別為:

         

      ∴兩切線均過點,且

      ,由此可知點A、B都在直線

      ∴直線的方程為

      (Ⅱ)設,由(Ⅰ)可知直線AB的方程為

      ,即,同理可得

      ,即為……①

      ∵P在橢圓上,∴

      ,代入①式,得

      故橢圓C的方程為:

      22、解:(Ⅰ)∵,∴

      兩式相減得:

          ∴

      時,

      ,∴

      (Ⅱ)證明:

      (Ⅲ)


      同步練習冊答案