A.B為切點.直線AB與軸.軸分別交于M.N兩點. 查看更多

 

題目列表(包括答案和解析)

直線AB過拋物線x2=2py(p>0)的焦點F,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準線與y軸的交點,O是坐標原點.
(Ⅰ)求
MA
MB
的取值范圍;
(Ⅱ)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證:
MN
OF
=0,
NQ
OF
;
(Ⅲ)若p是不為1的正整數(shù),當
MA
MB
=4P2,△ABN的面積的取值范圍為[5
5
,20
5
]時,求該拋物線的方程.

查看答案和解析>>

直線AB過拋物線x2=2py(p>0)的焦點9,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準線與y軸的交點,O是坐標原點.

(1)求證的取值范圍;

(2)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,

求證:;

(3)設直線AB與x軸、y軸的兩個交點分別為K和L,當=4p2,△ABN的面積的取值范圍限定為[]時,求動線段KL的軌跡所形成的平面區(qū)域的面積.

查看答案和解析>>

直線AB過拋物線x2=2py(p>0)的焦點F,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準線與y軸的交點,O是坐標原點.
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證:=0,;
(Ⅲ)若p是不為1的正整數(shù),當=4P2,△ABN的面積的取值范圍為[5,20]時,求該拋物線的方程.

查看答案和解析>>

直線AB過拋物線x2=2py(p0)的焦點F,并與其相交于A、B兩點.Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.

(Ⅰ)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:;

(Ⅲ)若P是不為1的正整數(shù),當,△ABN的面積的取值范圍為時,求該拋物線的方程.

查看答案和解析>>

直線AB過拋物線的焦點F,并與其相交于A、B兩點.Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.

(Ⅰ)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:

(Ⅲ)若P是不為1的正整數(shù),當,△ABN的面積的取值范圍為時,求該拋物線的方程.

查看答案和解析>>

 

一、選擇題

1、C       2、C        3、D       4、B       5、D       6、A  

7、D       8、B        9、C      10、A      11、B      12、B

二、填空題

13、±4         14、0.18       15、251,4      16、①②

三、解答題

17、解:(Ⅰ)由,得

也即

   ∴

(Ⅱ)∵  

的最大值為

18、解:(Ⅰ)∵擊中目標次的概率為

∴他至少擊中兩次的概率

(Ⅱ)設轉(zhuǎn)移前射擊次數(shù)為,的可能取值為1,2,3,4,5

,1,2,3,4   

的分布列為

1

2

3

4

5

19、解:(Ⅰ)∵,∴

<rt id="fiq2s"></rt>
<source id="fiq2s"><dfn id="fiq2s"><strike id="fiq2s"></strike></dfn></source>

于M,連OM

是二面角B-DE-A的平面角,

中,,,由等面積法得

   ∴

(Ⅱ)     ∴

為直線BC與平面EDB所成的角,則

20.解:(Ⅰ)由已知得

依題意:恒成立

即:恒成立

也即:恒成立

    即

(Ⅱ)∵

在定義域

滿足上是減函數(shù),在是增函數(shù)

  當時,,∴上是增函數(shù)

  當時,,∴上是減函數(shù)

  當時,,∴上是減函數(shù)

上是增函數(shù)

21、解:(Ⅰ)設切點A、B的坐標為、

則過A、B的圓的切線方程分別為:

   

∴兩切線均過點,且

,由此可知點A、B都在直線

∴直線的方程為

(Ⅱ)設,由(Ⅰ)可知直線AB的方程為

,即,同理可得

,即為……①

∵P在橢圓上,∴

,代入①式,得

故橢圓C的方程為:

22、解:(Ⅰ)∵,∴

兩式相減得:

    ∴

時,

,∴

(Ⅱ)證明:

(Ⅲ)


同步練習冊答案