15.某公司租地建倉庫.每月土地占用費(fèi)y1與倉庫到車站的距離成反比.而每月庫存貨物的運(yùn)費(fèi)y2與到車站的距離成正比.如果在距離車站10千米處建倉庫.這兩項(xiàng)費(fèi)用這兩項(xiàng)費(fèi)用y1和y2分別為2萬元和8萬元.那么.英才要使這兩項(xiàng)費(fèi)用之和最小.倉庫應(yīng)建在離車站 千米處. 查看更多

 

題目列表(包括答案和解析)

某公司租地建倉庫,每月土地占用費(fèi)y1與倉庫到車站的距離成反比,而每月庫存貨物的運(yùn)費(fèi)y2與到車站的距離成正比,如果在距離車站10km處建倉庫,這兩項(xiàng)費(fèi)用y1和y2分別為2萬元和8萬元,那么要使這兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在距離車站( 。
A、4kmB、5kmC、6kmD、7km

查看答案和解析>>

某公司租地建倉庫,每月土地占用費(fèi)y1與倉庫到車站的距離成反比,而每月庫存貨物的運(yùn)費(fèi)y2與到車站的距離成正比,如果在距離車站10千米處建倉庫,這兩項(xiàng)費(fèi)用y1和y2分別為2萬元和8萬元,那么,要使這兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在離車站
 
千米處.

查看答案和解析>>

某公司租地建倉庫,每月土地占用費(fèi)y1與車庫到車站的距離x成反比,而每月的庫存貨物的運(yùn)費(fèi)y2與車庫到車站的距離x成正比.如果在距離車站10公里處建立倉庫,這兩項(xiàng)費(fèi)用y1和y2分別為2萬元和8萬元.求若要使得這兩項(xiàng)費(fèi)用之和最小時(shí),倉庫應(yīng)建在距離車站多遠(yuǎn)處?此時(shí)最少費(fèi)用為多少萬元?

查看答案和解析>>

某公司租地建倉庫,每月土地占用費(fèi)y1與倉庫到車站的距離成反比例,每月庫存貨物的運(yùn)費(fèi)y2與倉庫到車站的距離成正比例;如果在距離車站10公里處建倉庫,y1=2萬元,y2=8萬元,為使兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在距離車站
5
5
公里處.

查看答案和解析>>

某公司租地建倉庫,每月土地占用費(fèi)y1與倉庫到車站的距離成反比,而每月庫存貨物費(fèi)y2與到車站的距離成正比,如果在距離車站12公里處建倉庫,這兩項(xiàng)費(fèi)用y1和y2分別為3萬元和12萬元,那么要使這兩項(xiàng)費(fèi)用之和最小,倉庫應(yīng)建在離車站( 。

查看答案和解析>>

一、選擇題:

1―5:ACCCB  6―10:CDACD   11―12:BC  

二、填空題:

13.2  14.   15.5   16.①   ②球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)

三、解答題:

17.(本小題滿分12分)

解:(I)……………………2分

……………………4分

       ……………………………………………………………………5分

   (II)、B均為銳角且B<A

    又C為鈍角

    ∴最短邊為b……………………………………………………7分

    由,解得………………………………9分

    又…………………………12分

18.(本小題滿分12分)

       解:(I)

………………………………3分

…………………………………………………4分

   (II)令.

    若時(shí),當(dāng)時(shí),函數(shù)

    …………………………………………………………6分

    若時(shí),當(dāng)時(shí),函數(shù)

    …………………………………………………………8分

   (III)由

    確定單調(diào)遞增的正值區(qū)間是;

    由

    確定單調(diào)遞減的正值區(qū)間是;………10分

    綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.

    當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.……12分

       注:①

     的這些

等價(jià)形式中,以最好用. 因?yàn)閺?fù)合函數(shù)

的中間變量是增函數(shù),對求的單調(diào)區(qū)間來說,

只看外層函數(shù)的單調(diào)性即可.否則,利用的其它形

式,例如求單調(diào)區(qū)間是非常容易出錯(cuò)的. 同學(xué)們可以嘗試做一

的其它形式,認(rèn)真體會,比較優(yōu)劣!

       ②今后遇到求類似的單調(diào)區(qū)間問題,應(yīng)首先通過誘導(dǎo)公式將轉(zhuǎn)化為標(biāo)準(zhǔn)形

式:(其中A>0,ω>0),然后再行求

解,保險(xiǎn)系數(shù)就大了.

19.(本小題滿分12分)

       解:(I)由已知……………………1分

    …………3分

由已知

∴公差d=1…………………………………………………………4分

……………………………………………………6分

   (II)設(shè)…………………………7分

    當(dāng)時(shí),k的增函數(shù),也是k的增函數(shù).

    ………………………………10分

    又

    *不存在,使…………………………………12分

20.(本小題滿分12分)

解:恒成立

只需小于的最小值…………………………………………2分

而當(dāng)時(shí),≥3……………………………………………4分

……………………………………………………6分

存在極大值與極小值

有兩個(gè)不等的實(shí)根…………………………8分

…………………………………………………………10分

要使“PQ”為真,只需

故m的取值范圍為[2,6].…………………………………………………12分

21.(本小題滿分12分)

解:設(shè)此工廠應(yīng)分別生產(chǎn)甲、乙兩種產(chǎn)品x噸、y噸,獲得利潤z萬元………1分

       依題意可得約束條件:

  • <td id="c2cme"><dd id="c2cme"></dd></td>
    • <table id="c2cme"></table><fieldset id="c2cme"></fieldset>

       

             利潤目標(biāo)函數(shù)…………(7分)                            

      如圖,作出可行域,作直線,把直線l向右上方平移至l1位置,直線經(jīng)過可行域上的點(diǎn)M,且與原點(diǎn)距離最大,此時(shí)取最大值.…………10分

             解方程組,得M(20,24)

      故生產(chǎn)甲種產(chǎn)品20t,乙種產(chǎn)品24 t,才能使此工廠獲得最大利潤.…………12分

      22.(本小題滿分14分)

      解:(Ⅰ)依題意

            =5n-4    ……………………3分

      (Ⅱ)(1)由

      即 

          ……………………6分

      即      

      是以為首項(xiàng),為公差的等差數(shù)列  ………………8分

      (2)由(1)得

          ………………10分

             ①

      ∴2  ②

      ①-②得  

                     =

        ………………14分


      同步練習(xí)冊答案