∴在[a+1.a+2]上單調(diào)遞減 9分 查看更多

 

題目列表(包括答案和解析)

設函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當,即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當,即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當時,;

時,

 

查看答案和解析>>

已知函數(shù)f(x)=
1
3
ax3+
1
2
bx2+cx.若方程f(x)=0有三個根分別為x1、x2、x2,且x1+x2+x3=-3,x1x2=-9.
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,1)上單調(diào)遞減,且函數(shù)f(x)的圖象與直線y=1有且僅有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

時,單調(diào)遞減,在單調(diào)遞增,當,即時,,

第二問中,,則

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,,

由(1)可知,的最小值為,當且僅當x=時取得

,則,易得。當且僅當x=1時取得.從而對一切,都有成立

解:(1)時,單調(diào)遞減,在單調(diào)遞增,當,即時,,

                 …………4分

(2),則,

單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知,的最小值為,當且僅當x=時取得

,,則,易得。當且僅當x=1時取得.從而對一切,都有成立

 

查看答案和解析>>


同步練習冊答案