17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿(mǎn)分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿(mǎn)分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線(xiàn)與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

 

一、1―5 DDDBB                6―10  CABCA   11―12 CD

二、13.

       14.甲                     15.12,3                16.

三、17.解:

   (1)∵

       =

       =

       =

       =

       ∴周期

   (2)∵

       因?yàn)?sub>在區(qū)間上單調(diào)遞增,

       在區(qū)間上單調(diào)遞減,

       所以,當(dāng)時(shí),取最大值1

       又

       ∴當(dāng)時(shí),取最小值

       所以函數(shù)在區(qū)間上的值域?yàn)?sub>

18.證明:

   (Ⅰ)連接AC,則F是AC的中點(diǎn),在△CPA中,EF∥PA…………………………3分

       且PC平面PAD,EFPAD,

       ∴EF∥平面PAD…………………………………………………………………………6分

   (Ⅱ)因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,又CD⊥AD,

       ∴CD⊥平面PAD,∴CD⊥PA…………………………………………………………8分

       又PA=PD=AD,∴△PAD是等腰直角三角形,且∠APD=

       即PA⊥PD………………………………………………………………………………10分

       而CD∩PD=D,∴PA⊥平面PDC,又EF∥PA,∴EF⊥平面PDC………………12分

19.(I)由      ①

            ②

       ①-②得:

       即

      

      

      

   (II)

      

      

      

      

       故

20.解:(1)

   (2)

      

       由及bc=20與a=3

       解得b=4,c=5或b=5,c=4

   (3)設(shè)D到三邊的距離分別為x、y、z

       則

      

       又x、y滿(mǎn)足

       畫(huà)出不等式表示的平面區(qū)域得:

21.解:(1)

       由于函數(shù)時(shí)取得極值,

       所以

       即

   (2)方法一

       由 題設(shè)知:

       對(duì)任意都成立

       即對(duì)任意都成立

       設(shè),

       則對(duì)任意為單調(diào)遞增函數(shù)

       所以對(duì)任意恒成立的充分必要條件是

       即

       于是x的取值范圍是

       方法二

       由題設(shè)知:

       對(duì)任意都成立

       即

       對(duì)任意都成立

       于是對(duì)任意都成立,

       即

      

       于是x的取值范圍是

22.解:(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為

       由已知得:

      

       橢圓的標(biāo)準(zhǔn)方程為

   (II)設(shè)

       聯(lián)立

       得

      

       又

       因?yàn)橐訟B為直徑的圓過(guò)橢圓的右焦點(diǎn)D(2,0)

       ∴

       ∴+ -2

       ∴

       ∴

       解得:

       且均滿(mǎn)足

       當(dāng),直線(xiàn)過(guò)定點(diǎn)(2,0)與已知矛盾;

       當(dāng)時(shí),l的方程為,直線(xiàn)過(guò)定點(diǎn)(,0)

       所以,直線(xiàn)l過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為(,0)

 

 

 


同步練習(xí)冊(cè)答案