(1)求數(shù)列{}的倒均數(shù)是.求數(shù)列{}的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項(xiàng)的平均數(shù)的倒數(shù)為
1
2n+1
,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=
an
2n+1
,試判斷并說(shuō)明cn+1-cn(n∈N*)的符號(hào);
(3)設(shè)函數(shù)f(x)=-x2+4x-
an
2n+1
,是否存在最大的實(shí)數(shù)λ,當(dāng)x≤λ時(shí),對(duì)于一切自然數(shù)n,都有f(x)≤0.

查看答案和解析>>

已知數(shù)列{an},定義其倒均數(shù)是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*

(1)求數(shù)列{an}的倒均數(shù)是Vn=
n+1
2
,求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)等比數(shù)列{bn}的首項(xiàng)為-1,公比為q=
1
2
,其倒數(shù)均為Vn,若存在正整數(shù)k,使n≥k時(shí),Vn<-16恒成立,試求k的最小值.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)的平均數(shù)的倒數(shù)為數(shù)學(xué)公式,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)學(xué)公式,試判斷并說(shuō)明cn+1-cn(n∈N*)的符號(hào);
(3)設(shè)函數(shù)數(shù)學(xué)公式,是否存在最大的實(shí)數(shù)λ,當(dāng)x≤λ時(shí),對(duì)于一切自然數(shù)n,都有f(x)≤0.

查看答案和解析>>

已知數(shù)列{an},定義其倒均數(shù)是數(shù)學(xué)公式
(1)求數(shù)列{an}的倒均數(shù)是數(shù)學(xué)公式,求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)等比數(shù)列{bn}的首項(xiàng)為-1,公比為數(shù)學(xué)公式,其倒數(shù)均為Vn,若存在正整數(shù)k,使n≥k時(shí),Vn<-16恒成立,試求k的最小值.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)的平均數(shù)的倒數(shù)為
1
2n+1
,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)cn=
an
2n+1
,試判斷并說(shuō)明cn+1-cn(n∈N*)的符號(hào);
(3)設(shè)函數(shù)f(x)=-x2+4x-
an
2n+1
,是否存在最大的實(shí)數(shù)λ,當(dāng)x≤λ時(shí),對(duì)于一切自然數(shù)n,都有f(x)≤0.

查看答案和解析>>

一、選擇題

<mark id="q48e2"></mark>
<noscript id="q48e2"><noframes id="q48e2">

2,4,6

二、填空題

13.   14.3   15.-192    16. 22.2

三、解答題

17.解:(1)∵

①……………………2分

②……………………4分

聯(lián)立①,②解得:……………………6分

(2)

……………………10分

……………………11分

當(dāng)

此時(shí)……………………12分

18.解:以D1為原點(diǎn),D1A1所在直線為x軸,D1C1所在直線為y軸,D1D所在直線為z軸建立空間直角坐標(biāo)系,

則D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

   (1)∵

∴PA⊥B1D1.…………………………4分

(2)平面BDD1B­1的法向量為……………………6分

設(shè)平面PAD的法向量,則n⊥

…………………………10分

設(shè)所求銳二面角為,則

……………………12分

19.解:(1)從50名教師隨機(jī)選出2名的方法數(shù)為

選出2人使用版本相同的方法數(shù)為

故2人使用版本相同的概率為:

…………………………5分

(2)∵,

0

1

2

P

的分布列為

 

 

………………10分

……………………12分

可以不扣分)

20.解:(1)依題意,

當(dāng)

兩式相減得,得

……………………4分

當(dāng)n=1時(shí),

=1適合上式……………………5分

…………………………6分

(2)由題意,

………………10分

不等式恒成立,即恒成立.…………11分

經(jīng)檢驗(yàn):時(shí)均適合題意(寫(xiě)出一個(gè)即可).……………………12分

21.解:(1)設(shè),

由條件知

故C的方程為:……………………4分

(2)由

…………………………5分

設(shè)l與橢圓C交點(diǎn)為

(*)

……………………7分

消去

整理得………………9分

,

容易驗(yàn)證所以(*)成立

即所求m的取值范圍為………………12分

22.(1)證明:假設(shè)存在使得

…………………………2分

上的單調(diào)增函數(shù).……………………5分

是唯一的.……………………6分

(2)設(shè)

上的單調(diào)減函數(shù).

……………………8分

…………10分

…………12分

為鈍角

∴△ABC為鈍角三角形.……………………14分

 

 


同步練習(xí)冊(cè)答案